高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于GLR-NT的显著误差检测与数据协调

蒋余厂 刘爱伦

蒋余厂, 刘爱伦. 基于GLR-NT的显著误差检测与数据协调[J]. 华东理工大学学报(自然科学版), 2011, (4): 502-508.
引用本文: 蒋余厂, 刘爱伦. 基于GLR-NT的显著误差检测与数据协调[J]. 华东理工大学学报(自然科学版), 2011, (4): 502-508.
JIANG Yu-chang, LIU Ai-lun. Gross Error Detection and Data Reconciliation Based on A GLR-NT Combined Method[J]. Journal of East China University of Science and Technology, 2011, (4): 502-508.
Citation: JIANG Yu-chang, LIU Ai-lun. Gross Error Detection and Data Reconciliation Based on A GLR-NT Combined Method[J]. Journal of East China University of Science and Technology, 2011, (4): 502-508.

基于GLR-NT的显著误差检测与数据协调

基金项目: 

国家“863”项目(2009AA042141)

Gross Error Detection and Data Reconciliation Based on A GLR-NT Combined Method

  • 摘要: 提出了一种广义似然比法(Generalized Likelihood Ratio, GLR)与节点检测法 (Nodal Test, NT)组合的显著误差检测和稳态数据协调方法。该方法充分发挥了GLR法和NT法的优点,采用逐次侦破、补偿校正的策略,避免了传统显著误差侦破方法中系数矩阵降秩问题,并且融入了测量变量的上、下限约束,最终实现显著误差的侦破、识别、处理和测量数据的协调。仿真结果显示:该方法对多显著误差特别是误差幅度较小或出现节点大显著误差相互抵消的情况具有较好的性能,优于单独的GLR法和NT-MT法。一个实例验证了该算法的有效性。

     

  • 加载中
计量
  • 文章访问数:  1458
  • HTML全文浏览量:  111
  • PDF下载量:  964
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-08

目录

    /

    返回文章
    返回