高级检索

    武晓乐, 秦秀林, 姚高峰, 储炬, 钱江潮. 优化甲硫氨酸补料策略提高重组毕赤酵母G12-CBS合成S-腺苷甲硫氨酸[J]. 华东理工大学学报(自然科学版), 2012, (5): 587-593.
    引用本文: 武晓乐, 秦秀林, 姚高峰, 储炬, 钱江潮. 优化甲硫氨酸补料策略提高重组毕赤酵母G12-CBS合成S-腺苷甲硫氨酸[J]. 华东理工大学学报(自然科学版), 2012, (5): 587-593.
    WU Xiao-le, QIN Xiu-lin, YAO Gao-feng, CHU Ju, QIAN Jiang-chao. Optimization of L-Methionine Feeding Strategy for Improving SAdenosylL-Methionine Production by Recombinant Pichia pastoris G12-CBS[J]. Journal of East China University of Science and Technology, 2012, (5): 587-593.
    Citation: WU Xiao-le, QIN Xiu-lin, YAO Gao-feng, CHU Ju, QIAN Jiang-chao. Optimization of L-Methionine Feeding Strategy for Improving SAdenosylL-Methionine Production by Recombinant Pichia pastoris G12-CBS[J]. Journal of East China University of Science and Technology, 2012, (5): 587-593.

    优化甲硫氨酸补料策略提高重组毕赤酵母G12-CBS合成S-腺苷甲硫氨酸

    Optimization of L-Methionine Feeding Strategy for Improving SAdenosylL-Methionine Production by Recombinant Pichia pastoris G12-CBS

    • 摘要: 重组毕赤酵母G12CBS经代谢工程改造,可高效表达重组S腺苷甲硫氨酸(SAM)合成酶,并弱化了SAM转化途径的关键酶β胱硫醚合成酶,是一株优良的SAM高产菌。为了利用G12CBS高效合成SAM,需对前体(甲硫氨酸)的补料策略进行优化。首先在摇瓶中考察了不同甲硫氨酸(LMethionine,LMet)添加量对于G12CBS的影响,发现每24 h LMet补加量超过3 mg/mL时,会影响重组菌生长和SAM合成。在15 L发酵罐中优化LMet的补料速率,当外源补料速率为0.4 g/(L·h)时SAM产量最高,分别比补料速率为0.2 g/(L·h)和0.6 g/(L·h)时提高22.2%和31.8%,达到13.01 g/L,比出发菌最高产量提高54%。代谢物及酶活测定的结果表明,较低的LMet补料速率(0.2 g/(L·h))导致前体供应不足而影响SAM合成,过高的补料速率(0.6 g/(L·h))可能会抑制三羧酸循环,并且影响氮源的摄取和利用,从而导致菌体生长和产物合成受到抑制。

       

      Abstract: As the second most widely used enzyme substrate after ATP, SadenosylLmethionine (SAM) has wide applications in clinic and health care. The recombinant Pichia pastoris G12CBS is a SAM producing strain, which was engineered to overexpress recombinant methionine adenosyltransferase and to downregulate the cystathionineβ synthase to reduce SAM transformation. In order to enhance SAM production, the feeding strategy of Lmethionine (LMet, the substrate for SAM synthesis) should be optimized. In shake flasks it was found that both cell growth and SAM production decreased when LMet addition amount was higher than 3 mg/mL in a day. In a 15 L bioreactor, the maximum SAM production (13.01 g/L) was reached at the LMet feeding rate of 0.4 g/(L·h), which was 22.2% and 31.8% higher than that with the feeding rate of 0.2 g/(L·h) and 0.6 g/(L·h) respectively, and was improved by 54% in comparison with the maximum production in the original strain. The analyses of key metabolites and enzyme activity indicated that the bottleneck for SAM production with the low LMet feeding rate (0.2 g/(L·h)) was the insufficient LMet supply, but both the tricarboxylic acid cycle and nitrogen uptake were reduced with the LMet feeding rate higher than 0.4 g/(L·h), which was probably the reason for the low SAM accumulation and cell growth inhibition.

       

    /

    返回文章
    返回