高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

两群替代微粒群优化算法及其应用

陈国初 俞金寿 郭伟

陈国初, 俞金寿, 郭伟. 两群替代微粒群优化算法及其应用[J]. 华东理工大学学报(自然科学版), 2005, (6): 787-791.
引用本文: 陈国初, 俞金寿, 郭伟. 两群替代微粒群优化算法及其应用[J]. 华东理工大学学报(自然科学版), 2005, (6): 787-791.
CHEN Guo-chu, YU Jin-shou , GUO Wei. Two Sub-swarms Substituting Particle Swarm Optimization Algorithm and Its Application[J]. Journal of East China University of Science and Technology, 2005, (6): 787-791.
Citation: CHEN Guo-chu, YU Jin-shou , GUO Wei. Two Sub-swarms Substituting Particle Swarm Optimization Algorithm and Its Application[J]. Journal of East China University of Science and Technology, 2005, (6): 787-791.

两群替代微粒群优化算法及其应用

Two Sub-swarms Substituting Particle Swarm Optimization Algorithm and Its Application

  • 摘要: 提出一种两群替代微粒群优化算法(TSSPSO),并对算法参数进行分析和对算法方程进行修正。该方法将微粒分成飞行方向不同的两分群,其中一分群微粒朝着最优微粒飞行,另一分群微粒朝着相反方向飞行;飞行时,每一微粒不仅受到微粒本身飞行经验和本分群最优微粒的影响,还受到全群最优微粒的影响。搜索时,每一次迭代均以一定的替代率用一分群中若干优势微粒取代另一分群中相同数目的劣势微粒。对4种常用函数的优化问题进行测试并进行比较,结果表明:两群替代微粒群优化算法比基本微粒群优化算法更容易找到全局最优解,优化效率和优化性能明显提高。将两群替代微粒群优化算法用于常压塔汽油干点软测量,建立基于两群替代微粒群优化算法的汽油干点神经网络软测量模型,通过与实际工业数据的比较,表明基于两群替代微粒群神经网络的软测量模型精度高、性能好。

     

  • 加载中
计量
  • 文章访问数:  944
  • HTML全文浏览量:  72
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-11-24

目录

    /

    返回文章
    返回