高级检索

    融合多尺度时空图和注意力的航空发动机RUL预测

    Remaining Useful Life Prediction for Aircraft Engines Based on Multi-Scale Spatio-temporal GNN and Fusion Attention

    • 摘要: 针对现有航空发动机剩余寿命预测方法忽略时空融合以及局部与全局特征整合的不足,提出了一种基于多尺度时空图和融合注意力的航空发动机剩余寿命预测方法。时间维度上,设计短期与长期因果卷积分支,结合注意力机制实现多尺度时间特征融合;空间维度上,分别建模子系统内局部图与子系统间的超图结构,并通过门控机制自适应融合局部与全局特征。进一步地,引入跨尺度时空注意力模块以强化关键时空依赖,提升预测精度。实验表明,该模型在C-MAPSS的多个子数据集上的性能均优于现有主流方法,展现出良好的预测准确性。

       

      Abstract: Remaining Useful Life (RUL) prediction is a critical task in the health management of aircraft engines. To effectively model the complex temporal dynamics and spatial structural information, this paper proposes a novel RUL prediction method based on Multi-Scale Spatio-temporal Graphs with Fusion Attention (MSFA-STG). In the temporal dimension, we design parallel branches of short-term and long-term causal convolutions, which are fused using an attention mechanism to capture multi-scale temporal features. In the spatial dimension, both local graphs within subsystems and hyper graph structures across subsystems are constructed, and a gating mechanism is employed to adaptively fuse local and global spatial features. Furthermore, a cross-scale spatio-temporal attention module is introduced to enhance the modeling of critical spatio-temporal dependencies, thereby improving prediction accuracy. Experimental results on the C-MAPSS datasets demonstrate that the proposed model outperforms mainstream methods, showing strong generalization and high predictive accuracy.

       

    /

    返回文章
    返回