高级检索

    MBM-Mamba:基于Mamba的多分支结构尘肺病筛查及分期模型

    MBM-Mamba: Multi-Branch Model Based on Mamba for Pneumoconiosis Screening and Staging

    • 摘要: 现有基于卷积神经网络(CNN,Convolutional Neural Network)的辅助诊断方法在尘肺病筛查与分期任务中难以达到理想精度。因此,提出面向胸部X光图像尘肺病筛查与分期的多分支结构模型,即MBM-Mamba。MBM-Mamba在SS2D框架下提出了新的六向扫描策略,借助对角扫描以线性时间复杂度显式捕获了二维局部依赖关系,然后通过在CNN中整合先验信息构建了细节增强模块(Detail Enhancement Module,Dem),从而形成了局部特征提取模块(CNN-Mamba),以显著提升细微病灶信息的表达能力。另外,MBM-Mamba在多头自注意力机制(基础上设计了全局特征提取模块,有效增强全局上下文捕捉能力。MBM-Mamba利用多路残差整合了上述两个模块,实现了跨结构特征的同步分层融合,从而使模型能更好理解肺部病灶的整体分布与纤维化程度。在1760张真实匿名患者胸部X光片上验证MBM-Mamba准确率达78.6%,F1分数达79%,两项指标均优于现有模型。

       

      Abstract: Existing Convolutional Neural Network (CNN)-based auxiliary diagnosis methods fail to achieve ideal accuracy in the screening and staging tasks of pneumoconiosis. Therefore, this paper proposes a multi-branch structured model, namely MBM-Mamba, for the screening and staging of pneumoconiosis in chest X-ray images. MBM-Mamba introduces a novel six-directional scanning strategy under the SS2D framework, which explicitly captures two-dimensional local dependencies in linear time complexity through diagonal scanning. It then integrates prior information into the CNN to construct a detail enhancement module (Dem), thereby forming a local feature extraction module (CNN-Mamba) that significantly enhances the expression ability of subtle lesion information. Additionally, MBM-Mamba designs a global feature extraction module on the basis of the multi-head self-attention mechanism (W-MSA), effectively enhancing the ability to capture global context. MBM-Mamba integrates the two modules via multi-path residual connections, achieving synchronous hierarchical fusion of cross-structural features, thus enabling the model to better understand the overall distribution and fibrosis degree of pulmonary lesions. Validated on 1,760 real anonymized patient chest X-ray images, MBM-Mamba achieved an accuracy of 78.6% and an F1 score of 79%, both of which outperformed existing models.

       

    /

    返回文章
    返回