高级检索

    基于双曲空间的多视图对比学习捆绑推荐算法

    Hyperbolic Multi-view Contrastive Learning for Bundle Recommendation

    • 摘要: 捆绑推荐旨在向用户推荐一组相关商品(捆绑包)。针对现有方法在捕捉交互图层次结构和多视图信息融合方面的不足,本文提出了一种基于双曲空间的多视图对比学习的捆绑推荐模型(HMCBR)。该模型在三个视图的基础上,将实体嵌入双曲空间,并利用双曲图卷积网络学习各视图下的用户与捆绑包表示;此外,引入双曲自注意力机制自适应分配视图权重,以优化多视图信息融合;同时结合视图内对比学习和视图间对比学习,强化特征一致性与多视图信息交互。实验结果表明,HMCBR在三个主流的数据集上的表现均优于基线模型,有效的提升推荐效果。

       

      Abstract: Bundle recommendation aims at recommending a set of related items (bundles) to users. To address the limitations of existing methods in capturing the hierarchical structure of interaction graphs and integrating multi-view information, this paper proposes a hyperbolic multi-view contrastive learning framework for bundle recommendation (HMCBR). The model embeds entities into hyperbolic space and leverages a hyperbolic graph convolutional network to learn user and bundle representations across different views. Additionally, a hyperbolic self-attention mechanism is introduced to adaptively allocate view weights, optimizing multi-view information fusion. Moreover, both intra-view and inter-view contrastive learning are incorporated to enhance feature consistency and multi-view information interaction. Experimental results demonstrate that HMCBR outperforms baseline models on three benchmark datasets, effectively improving recommendation performance.

       

    /

    返回文章
    返回