高级检索

    基于双尺度自适应令牌注意力的交通流量预测

    Traffic Flow Prediction Based on Dual-Scale Adaptive Token Attention

    • 摘要: 针对交通流量预测任务现有方法在计算复杂度高、实时性差以及局部与全局特征整合方面的不足,提出了一种基于双尺度自适应令牌注意力的交通流量预测模型。该模型结合双尺度自适应令牌注意力机制,旨在提取复杂时空特征并优化计算效率。模型通过双尺度可学习池化得到的令牌分别捕获数据的长期和短期特征,并利用自适应令牌注意力机制整合全局依赖关系,提升预测准确性和效率。实验在两个公开数据集上进行验证,结果表明该方法在预测精度和计算效率上优于现有主流模型,适用于实时交通流量预测场景,为智能交通系统提供了一种高效、精准的解决方案,具有重要的理论和实践意义。

       

      Abstract: To address the shortcomings of existing methods in traffic flow prediction regarding computational complexity, real-time performance, and the integration of local and global features, this paper proposes a traffic flow prediction model based on dual-scale adaptive token attention. The model incorporates a dual-scale adaptive token attention mechanism designed to extract complex spatio-temporal features while optimizing computational efficiency. Through dual-scale learnable pooling operations, the obtained tokens effectively capture long-term and short-term temporal features of the data. Furthermore, the adaptive token attention mechanism integrates global dependencies to enhance prediction accuracy and operational efficiency. Experimental validation on two public datasets demonstrates that the proposed method outperforms existing mainstream models in both prediction accuracy and computational efficiency. Particularly suitable for real-time traffic flow prediction scenarios, this approach provides an efficient and accurate solution for intelligent transportation systems, exhibiting significant theoretical and practical implications.

       

    /

    返回文章
    返回