高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

聚丙烯酰胺/壳聚糖/二氧化硅水凝胶亲水疏油筛网的制备与性能

赖智荣 熊浚翔 黄蓓 曹峥 成骏峰 刘春林

赖智荣, 熊浚翔, 黄蓓, 曹峥, 成骏峰, 刘春林. 聚丙烯酰胺/壳聚糖/二氧化硅水凝胶亲水疏油筛网的制备与性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220704002
引用本文: 赖智荣, 熊浚翔, 黄蓓, 曹峥, 成骏峰, 刘春林. 聚丙烯酰胺/壳聚糖/二氧化硅水凝胶亲水疏油筛网的制备与性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220704002
LAI Zhirong, Xiong Junxiang, HUANG Bei, CAO Zheng, CHENG Junfeng, LIU Chunlin. Preparation and Performance of Hydrophilic and Oleophobic Mesh Modifed with Polyacrylamide/Chitosan/SiO2 Hydrogel[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220704002
Citation: LAI Zhirong, Xiong Junxiang, HUANG Bei, CAO Zheng, CHENG Junfeng, LIU Chunlin. Preparation and Performance of Hydrophilic and Oleophobic Mesh Modifed with Polyacrylamide/Chitosan/SiO2 Hydrogel[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220704002

聚丙烯酰胺/壳聚糖/二氧化硅水凝胶亲水疏油筛网的制备与性能

doi: 10.14135/j.cnki.1006-3080.20220704002
基金项目: 国家自然科学基金(21704008);江苏省高等学校自然科学研究重大项目(20KJA430011);江苏省研究生科研创新计划(KYCX22_3006)
详细信息
    作者简介:

    赖智荣(1997-),男,江西赣州人,硕士生,主要研究方向为高分子功能材料。E-mail:497003169@qq.com

    通讯作者:

    曹 峥, E-mail:zcao@cczu.edu.cn

  • 中图分类号: O63

Preparation and Performance of Hydrophilic and Oleophobic Mesh Modifed with Polyacrylamide/Chitosan/SiO2 Hydrogel

  • 摘要: 使用1064 nm近红外激光对不锈钢筛网(SSM)进行表面刻蚀,通过调节激光器参数得到表面粗糙度最佳的不锈钢筛网。相较于传统化学刻蚀耗费化学试剂与产生废液废气等环境污染问题,激光刻蚀工艺简单,具有过程可控、快速高效以及安全环保的优势。以激光刻蚀的SSM为基体,壳聚糖(CS)为亲水组分,丙烯酰胺(AM)为单体,将不同含量的二氧化硅(SiO2)分散到体系中,加入光引发剂,以N,N’-亚甲基双丙烯酰胺(MBA)为交联剂,利用紫外光引发自由基聚合制备水下超疏油油水分离复合筛网PAM/CS/SiO2@SSM。利用激光扫描共聚焦显微镜(CLSM)、扫描电镜(SEM)、傅里叶变换红外光谱(FT-IR)等测试方法对PAM/CS/SiO2@SSM进行表征,研究了不同CS组分和不同SiO2添加量对复合筛网表面粗糙度的影响;采用重力驱动的方法分离油水混合物并研究了复合筛网的油水分离效率。实验结果表明激光刻蚀筛网具有工艺简单、刻蚀快速且参数可控的优势;制备的PAM/CS/SiO2@SSM分离筛网水下油接触角为155°,具有良好的亲水疏油性能;分别对液体石蜡、正己烷和石油醚3种不同的油水混合物进行油水分离实验,实验结果表明复合筛网对3种油品的分离效率分别为99.1%、98.8%和98.4%,具有高油水分离效率。

     

  • 图  1  PAM/CS/SiO2水凝胶和PAM/CS/SiO2@SSM复合筛网的制备

    Figure  1.  Preparation of PAM/CS/SiO2 hydrogel and PAM/CS/SiO2@SSM composite mesh

    图  2  不同激光刻蚀参数形成的不锈钢筛网表面图

    Figure  2.  Surface diagram of metal mesh formed by different laser etching parameters

    a—SSM; b—SSM-4; c—SSM-6; d—SSM-8; e—SSM-200; f—SSM-300; g—SSM-400; h—SSM-500; i—SSM-0.01; j—SSM-0.02;k—SSM-0.03; l—SSM-0.04

    图  3  不同激光参数刻蚀后不锈钢筛网的扫描电镜图

    Figure  3.  Scanning electron microscopy of metal mesh after etching of different laser parameters

    a—SSM; b—SSM-4; c—SSM-6; d—SSM-8; e—SSM-200; f—SSM-300; g—SSM-400; h—SSM-500; i—SSM-0.01; j—SSM-0.02; k—SSM-0.03; l—SSM-0.04

    图  4  样品的红外光谱图

    Figure  4.  FT-TR spectra of samples

    图  5  复合筛网和水凝胶的扫描电镜图

    Figure  5.  Scanning electron microscopy of composite mesh and hydrogels

    a—PAM/CS@SSM; b—PAM/CS@SSM; c—PAM/CS hydrogel; d—PAM/CS/SiO2@SSM; e—PAM/CS/SiO2@SSM; f—PAM/CS/SiO2 hydrogel

    图  6  不同样品的激光共聚焦图像(a~d)与样品表面粗糙度柱状图(e)

    Figure  6.  (a-d) laser confocal image of the sample and (e) sample surface roughness histogram

    a—PAM/0.1 g CS@SSM; b—PAM/0.1 g CS/SiO2@SSM; c—PAM/0.15 g CS@SSM; d—PAM/0.15 g CS/SiO2@SSM

    图  7  (a)不同CS含量复合筛网的水下油接触角柱状图;(b)添加不同SiO2含量的复合筛网的水下油接触角柱状图

    Figure  7.  (a) Underwater oil contact angle histogram of composite meshs with different CS content and (b) underwater oil contact angle histogram of composite meshs with different SiO2 content added

    图  8  (a) 循环次数对油水分离效率的影响(液体石蜡与水体积比1∶1);(b)不同油品(油水体积比1∶1)的油水分离效率

    Figure  8.  (a) Effect of cycle times on oil-water separation efficiency (liquid paraffin to water ratio 1∶1); (b) Oil-water separation efficiency of different oils (oil-water ratio 1∶1)

    表  1  激光刻蚀不锈钢筛网的工作参数

    Table  1.   Working parameters of laser etched stainless steel mesh

    Sample nameLaser power/WLine speed/(mm·s−1)Line spacing/mm
    SSM000
    SSM-442000.02
    SSM-662000.02
    SSM-882000.02
    SSM-20082000.02
    SSM-30083000.02
    SSM-40084000.02
    SSM-50085000.02
    SSM-0.0182000.01
    SSM-0.0282000.02
    SSM-0.0382000.03
    SSM-0.0482000.04
    下载: 导出CSV

    表  2  PAM/CS/SiO2水凝胶实验配方表

    Table  2.   PAM/CS/SiO2 hydrogel formulation experimental recipe

    Samplem/g
    AMCSMBAIRG2960SiO2
    PAM/CS0.05 g @SSM2.1320.050.00050.0210
    PAM/CS0.10 g @SSM2.1320.100.00050.0210
    PAM/CS0.15 g @SSM2.1320.150.00050.0210
    PAM/CS0.20 g @SSM2.1320.200.00050.0210
    PAM/CS/SiO20.05@SSM2.1320.150.00050.0210.05
    PAM/CS/SiO20.10@SSM2.1320.150.00050.0210.10
    PAM/CS/SiO20.15@SSM2.1320.150.00050.0210.15
    PAM/CS/SiO20.20@SSM2.1320.150.00050.0210.20
    下载: 导出CSV
  • [1] ARBATAN T, FANG X, SHEN W. Superhydrophobic and oleophilic calcium carbonate powder as a selective oil sorbent with potential use in oil spill clean-ups[J]. Chemical Engineering Journal, 2011, 166(2): 787-791. doi: 10.1016/j.cej.2010.11.015
    [2] LI Y, ZHANG G, GAO A, et al. Robust graphene/Poly(vinyl alcohol) janus aerogels with a hierarchical architecture for highly efficient switchable separation of oil/water emulsions[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36638-36648.
    [3] YU J, BROECKER W S. Comment on “deep-sea temperature and ice volume changes across the pliocene-pleistocene climate transitions”[J]. Science, 2010, 328(5985): 1480.
    [4] 宋雅萍, 金玲, 管欣悦, 等. pH响应油水分离共聚物膜的合成及分离应用[J]. 华东理工大学学报(自然科学版), 2020, 46(1): 16-23. doi: 10.14135/j.cnki.1006-3080.20181214002
    [5] FENG X J, JIANG L. Design and creation of superwetting/antiwetting surfaces[J]. Advanced Materials, 2006, 18(23): 3063-3078. doi: 10.1002/adma.200501961
    [6] WANG Z, ELIMELECH M, LIN S. Environmental applications of interfacial materials with special wettability[J]. Environmental Science & Technology, 2016, 50(5): 2132-2150.
    [7] ZHENG W, HUANG J, LI S, et al. Advanced materials with special wettability toward intelligent oily wastewater remediation[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 67-87.
    [8] ZHU M, LIU Y, CHEN M, et al. Metal mesh-based special wettability materials for oil-water separation: A review of the recent development[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108889. doi: 10.1016/j.petrol.2021.108889
    [9] INAGAKI M. Creation of functional nano- and micro-sized spaces in carbon materials[J]. Synthetic Metals, 2001, 125(2): 139. doi: 10.1016/S0379-6779(01)00522-7
    [10] PAYNE K C, JACKSON C D, AIZPURUA C E, et al. Oil spills abatement: Factors affecting oil uptake by cellulosic fibers[J]. Environmental Science & Technology, 2012, 46(14): 7725-7730.
    [11] KANG H, SUN Y, LI Y, et al. Mechanically robust fish-scale microstructured TiO2-coated stainless steel mesh by atomic layer deposition for oil-water separation[J]. Industrial & Engineering Chemistry Research, 2020, 59(48): 21088-21096.
    [12] ZHANG Y, WANG H, WANG X, et al. An anti-oil-fouling and robust superhydrophilic MnCo2O4 coated stainless steel mesh for ultrafast oil/water mixtures separation[J]. Separation and Purification Technology, 2021: 118435.
    [13] LI G, MA S, YE F, et al. Permeation characteristics of a T-type zeolite membrane for bio-oil pervaporation dehydration[J]. Microporous Mesoporous Mater, 2021, 315: 110884. doi: 10.1016/j.micromeso.2021.110884
    [14] XU Z, JIANG D, WEI Z, et al. Fabrication of superhydrophobic nano-aluminum films on stainless steel meshes by electrophoretic deposition for oil-water separation[J]. Applied Surface Science, 2018, 427: 253-261.
    [15] CAO Z, CHEN Y, LI D, et al. Fabrication of phosphate-imprinted PNIPAM/SiO2 hybrid particles and their phosphate binding property[J]. Polymers, 2019, 11(2): 253. doi: 10.3390/polym11020253
    [16] CAO Z, DU B, CHEN T, et al. Fabrication and properties of thermosensitive organic/Inorganic hybrid hydrogel thin films[J]. Langmuir, 2008, 24(10): 5543-5551. doi: 10.1021/la8000653
    [17] CAO Z, DU B, CHEN T, et al. Preparation and properties of thermo-sensitive organic/inorganic hybrid microgels[J]. Langmuir, 2008, 24(22): 12771-12778. doi: 10.1021/la802087n
    [18] CAO Z, HU Y, YU Q, et al. Facile fabrication, structures, and properties of laser-marked polyacrylamide/Bi2O3 hydrogels [J]. Advanced Engineering Materials, 2017, 19(5): 1600826. doi: 10.1002/adem.201600826
    [19] CAO Z, ZHANG Y, LUO K, et al. Preparation and properties of polyacrylamide/sodium alginate hydrogel and the effect of Fe3+ adsorption on its mechanical performance[J]. Journal of Renewable Materials, 2021, 9(8): 1447-1462. doi: 10.32604/jrm.2021.015593
    [20] WU Y, ZHANG Y, WANG K, et al. Construction of self-assembled polyelectrolyte/cationic microgel multilayers and their interaction with anionic dyes using quartz crystal microbalance and atomic Force Microscopy[J]. ACS Omega, 2021, 6(8): 5764-5774. doi: 10.1021/acsomega.0c06181
    [21] YAO C, LIU Z, YANG C, et al. Poly(N-isopropylacrylamide)-clay nanocomposite hydrogels with responsive bending property as temperature-controlled manipulators[J]. Advanced Functional Materials, 2015, 25(20): 2980-2991. doi: 10.1002/adfm.201500420
    [22] 龚信瑀, 杨峥, 刘璨, 等. 电喷雾法构筑MOFs/壳聚糖荷正电纳滤膜[J]. 华东理工大学学报(自然科学版), 2021, 47: 1-8. doi: 10.14135/j.cnki.1006-3080.20210609002
    [23] ZHANG Y, CAO Z, LUO Z, et al. Facile fabrication of underwater superoleophobic membrane based on polyacrylamide/chitosan hydrogel modified metal mesh for oil–water separation[J]. Journal of Polymer Science, 2022, 60(15): 2329-2342. doi: 10.1002/pol.20210923
    [24] ZENG B, LIANG J, FU C, et al. Synergistic effect of nano-silica and eco-friendly hydrogel for the cost-effective and highly efficient oil-water separation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 636: 128136. doi: 10.1016/j.colsurfa.2021.128136
    [25] 任小明. 溶胶凝胶法制备纳米二氧化硅的研究[J]. 胶体与聚合物, 2017, 35(2): 74-76. doi: 10.13909/j.cnki.1009-1815.2017.02.008
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  125
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04
  • 网络出版日期:  2022-08-31

目录

    /

    返回文章
    返回