Preparation and Performance of Hydrophilic and Oleophobic Mesh Modifed with Polyacrylamide/Chitosan/SiO2 Hydrogel
-
摘要: 使用1064 nm近红外激光对不锈钢筛网(SSM)进行表面刻蚀,通过调节激光器参数得到表面粗糙度最佳的不锈钢筛网。相较于传统化学刻蚀耗费化学试剂与产生废液废气等环境污染问题,激光刻蚀工艺简单,具有过程可控、快速高效以及安全环保的优势。以激光刻蚀的SSM为基体,壳聚糖(CS)为亲水组分,丙烯酰胺(AM)为单体,将不同含量的二氧化硅(SiO2)分散到体系中,加入光引发剂,以N,N’-亚甲基双丙烯酰胺(MBA)为交联剂,利用紫外光引发自由基聚合制备水下超疏油油水分离复合筛网PAM/CS/SiO2@SSM。利用激光扫描共聚焦显微镜(CLSM)、扫描电镜(SEM)、傅里叶变换红外光谱(FT-IR)等测试方法对PAM/CS/SiO2@SSM进行表征,研究了不同CS组分和不同SiO2添加量对复合筛网表面粗糙度的影响;采用重力驱动的方法分离油水混合物并研究了复合筛网的油水分离效率。实验结果表明激光刻蚀筛网具有工艺简单、刻蚀快速且参数可控的优势;制备的PAM/CS/SiO2@SSM分离筛网水下油接触角为155°,具有良好的亲水疏油性能;分别对液体石蜡、正己烷和石油醚3种不同的油水混合物进行油水分离实验,实验结果表明复合筛网对3种油品的分离效率分别为99.1%、98.8%和98.4%,具有高油水分离效率。Abstract: The stainless steel mesh (SSM) is laser etched with a 1064 nm near-infrared laser, and the stainless steel screen with the best surface roughness is obtained by adjusting the laser parameters. Compared with the traditional chemical etching consumption of chemical reagents and environmental pollution problems, the laser etching process is simple, with the advantages of process controllability, fast and efficient, safety and environmental protection. Using the laser-etched SSM as the matrix, chitosan (CS) as the hydrophilic component, acrylamide (AM) as a monomer, and then different contents of silica (SiO2) dispersed into the system, the photoinitiator was added, N,N'-methylenebisacrylamide (MBA) as the crosslinker, the underwater superoleophobic oil-water separation membrane (PAM/CS/SiO2@SSM) was prepared by ultraviolet light initiated radical polymerization. Laser scanning confocal microscopy (CLSM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and other test methods were used for the characterization of PAM/CS/SiO2@SSM separation mesh, and the effects of different CS components and different SiO2 additions on the surface roughness of composite mesh were studied. Gravity-driven method was used to separate the oil-water mixture, and the oil-water separation efficiency of the composite mesh was explored. The experimental results show that the laser etch mesh has the advantages of simple process, fast etching and controllable parameters; the underwater oil contact angle of the prepared PAM/CS/SiO2@SSM separation mesh can reach 155°, indicating the excellent hydrophilicity and oleophobicity; The separation efficiency of the composite mesh for three different oil-water mixtures including liquid paraffin, n-hexane, and petroleum ether can be reached 99.1%, 98.8% and 98.4%, respectively, indicating a high oil-water separation efficiency.
-
Key words:
- Acrylamide /
- Chitosan /
- Silicon dioxide /
- Laser etching /
- oil-water separation
-
表 1 激光刻蚀不锈钢筛网的工作参数
Table 1. Working parameters of laser etched stainless steel mesh
Sample name Laser power/W Line speed/(mm·s−1) Line spacing/mm SSM 0 0 0 SSM-4 4 200 0.02 SSM-6 6 200 0.02 SSM-8 8 200 0.02 SSM-200 8 200 0.02 SSM-300 8 300 0.02 SSM-400 8 400 0.02 SSM-500 8 500 0.02 SSM-0.01 8 200 0.01 SSM-0.02 8 200 0.02 SSM-0.03 8 200 0.03 SSM-0.04 8 200 0.04 表 2 PAM/CS/SiO2水凝胶实验配方表
Table 2. PAM/CS/SiO2 hydrogel formulation experimental recipe
Sample m/g AM CS MBA IRG2960 SiO2 PAM/CS0.05 g @SSM 2.132 0.05 0.0005 0.021 0 PAM/CS0.10 g @SSM 2.132 0.10 0.0005 0.021 0 PAM/CS0.15 g @SSM 2.132 0.15 0.0005 0.021 0 PAM/CS0.20 g @SSM 2.132 0.20 0.0005 0.021 0 PAM/CS/SiO20.05@SSM 2.132 0.15 0.0005 0.021 0.05 PAM/CS/SiO20.10@SSM 2.132 0.15 0.0005 0.021 0.10 PAM/CS/SiO20.15@SSM 2.132 0.15 0.0005 0.021 0.15 PAM/CS/SiO20.20@SSM 2.132 0.15 0.0005 0.021 0.20 -
[1] ARBATAN T, FANG X, SHEN W. Superhydrophobic and oleophilic calcium carbonate powder as a selective oil sorbent with potential use in oil spill clean-ups[J]. Chemical Engineering Journal, 2011, 166(2): 787-791. doi: 10.1016/j.cej.2010.11.015 [2] LI Y, ZHANG G, GAO A, et al. Robust graphene/Poly(vinyl alcohol) janus aerogels with a hierarchical architecture for highly efficient switchable separation of oil/water emulsions[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36638-36648. [3] YU J, BROECKER W S. Comment on “deep-sea temperature and ice volume changes across the pliocene-pleistocene climate transitions”[J]. Science, 2010, 328(5985): 1480. [4] 宋雅萍, 金玲, 管欣悦, 等. pH响应油水分离共聚物膜的合成及分离应用[J]. 华东理工大学学报(自然科学版), 2020, 46(1): 16-23. doi: 10.14135/j.cnki.1006-3080.20181214002 [5] FENG X J, JIANG L. Design and creation of superwetting/antiwetting surfaces[J]. Advanced Materials, 2006, 18(23): 3063-3078. doi: 10.1002/adma.200501961 [6] WANG Z, ELIMELECH M, LIN S. Environmental applications of interfacial materials with special wettability[J]. Environmental Science & Technology, 2016, 50(5): 2132-2150. [7] ZHENG W, HUANG J, LI S, et al. Advanced materials with special wettability toward intelligent oily wastewater remediation[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 67-87. [8] ZHU M, LIU Y, CHEN M, et al. Metal mesh-based special wettability materials for oil-water separation: A review of the recent development[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108889. doi: 10.1016/j.petrol.2021.108889 [9] INAGAKI M. Creation of functional nano- and micro-sized spaces in carbon materials[J]. Synthetic Metals, 2001, 125(2): 139. doi: 10.1016/S0379-6779(01)00522-7 [10] PAYNE K C, JACKSON C D, AIZPURUA C E, et al. Oil spills abatement: Factors affecting oil uptake by cellulosic fibers[J]. Environmental Science & Technology, 2012, 46(14): 7725-7730. [11] KANG H, SUN Y, LI Y, et al. Mechanically robust fish-scale microstructured TiO2-coated stainless steel mesh by atomic layer deposition for oil-water separation[J]. Industrial & Engineering Chemistry Research, 2020, 59(48): 21088-21096. [12] ZHANG Y, WANG H, WANG X, et al. An anti-oil-fouling and robust superhydrophilic MnCo2O4 coated stainless steel mesh for ultrafast oil/water mixtures separation[J]. Separation and Purification Technology, 2021: 118435. [13] LI G, MA S, YE F, et al. Permeation characteristics of a T-type zeolite membrane for bio-oil pervaporation dehydration[J]. Microporous Mesoporous Mater, 2021, 315: 110884. doi: 10.1016/j.micromeso.2021.110884 [14] XU Z, JIANG D, WEI Z, et al. Fabrication of superhydrophobic nano-aluminum films on stainless steel meshes by electrophoretic deposition for oil-water separation[J]. Applied Surface Science, 2018, 427: 253-261. [15] CAO Z, CHEN Y, LI D, et al. Fabrication of phosphate-imprinted PNIPAM/SiO2 hybrid particles and their phosphate binding property[J]. Polymers, 2019, 11(2): 253. doi: 10.3390/polym11020253 [16] CAO Z, DU B, CHEN T, et al. Fabrication and properties of thermosensitive organic/Inorganic hybrid hydrogel thin films[J]. Langmuir, 2008, 24(10): 5543-5551. doi: 10.1021/la8000653 [17] CAO Z, DU B, CHEN T, et al. Preparation and properties of thermo-sensitive organic/inorganic hybrid microgels[J]. Langmuir, 2008, 24(22): 12771-12778. doi: 10.1021/la802087n [18] CAO Z, HU Y, YU Q, et al. Facile fabrication, structures, and properties of laser-marked polyacrylamide/Bi2O3 hydrogels [J]. Advanced Engineering Materials, 2017, 19(5): 1600826. doi: 10.1002/adem.201600826 [19] CAO Z, ZHANG Y, LUO K, et al. Preparation and properties of polyacrylamide/sodium alginate hydrogel and the effect of Fe3+ adsorption on its mechanical performance[J]. Journal of Renewable Materials, 2021, 9(8): 1447-1462. doi: 10.32604/jrm.2021.015593 [20] WU Y, ZHANG Y, WANG K, et al. Construction of self-assembled polyelectrolyte/cationic microgel multilayers and their interaction with anionic dyes using quartz crystal microbalance and atomic Force Microscopy[J]. ACS Omega, 2021, 6(8): 5764-5774. doi: 10.1021/acsomega.0c06181 [21] YAO C, LIU Z, YANG C, et al. Poly(N-isopropylacrylamide)-clay nanocomposite hydrogels with responsive bending property as temperature-controlled manipulators[J]. Advanced Functional Materials, 2015, 25(20): 2980-2991. doi: 10.1002/adfm.201500420 [22] 龚信瑀, 杨峥, 刘璨, 等. 电喷雾法构筑MOFs/壳聚糖荷正电纳滤膜[J]. 华东理工大学学报(自然科学版), 2021, 47: 1-8. doi: 10.14135/j.cnki.1006-3080.20210609002 [23] ZHANG Y, CAO Z, LUO Z, et al. Facile fabrication of underwater superoleophobic membrane based on polyacrylamide/chitosan hydrogel modified metal mesh for oil–water separation[J]. Journal of Polymer Science, 2022, 60(15): 2329-2342. doi: 10.1002/pol.20210923 [24] ZENG B, LIANG J, FU C, et al. Synergistic effect of nano-silica and eco-friendly hydrogel for the cost-effective and highly efficient oil-water separation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 636: 128136. doi: 10.1016/j.colsurfa.2021.128136 [25] 任小明. 溶胶凝胶法制备纳米二氧化硅的研究[J]. 胶体与聚合物, 2017, 35(2): 74-76. doi: 10.13909/j.cnki.1009-1815.2017.02.008 -