高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

超弹性自修复导电水凝胶的制备及性能

赵博文 张静 张琰

赵博文, 张静, 张琰. 超弹性自修复导电水凝胶的制备及性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220616001
引用本文: 赵博文, 张静, 张琰. 超弹性自修复导电水凝胶的制备及性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220616001
ZHAO Bowen, ZHANG Jing, ZHANG Yan. Preparation and Properties of Ultra Elastic and Self-Healing Conductive Hydrogel[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220616001
Citation: ZHAO Bowen, ZHANG Jing, ZHANG Yan. Preparation and Properties of Ultra Elastic and Self-Healing Conductive Hydrogel[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220616001

超弹性自修复导电水凝胶的制备及性能

doi: 10.14135/j.cnki.1006-3080.20220616001
基金项目: 国家自然科学基金(51873062)
详细信息
    作者简介:

    赵博文(1995—),男,江苏南通人,硕士生,主要研究方向为水凝胶材料。E-mail:z1228126329@outlook.com

    通讯作者:

    张 静,E-mail:zhang_yan@ecust.edu.cn

    张 琰,E-mail:zhang_yan@ecust.edu.cn

  • 中图分类号: TB34

Preparation and Properties of Ultra Elastic and Self-Healing Conductive Hydrogel

  • 摘要: 基于席夫碱动态共价键的构建机理,为了延长导电水凝胶的使用寿命,在硼砂(BORAX)和氯化锂(LiCl)混合溶液中,由丙烯酰胺,N-2-氨基乙基丙烯酰胺盐酸盐(AEAM)和N-丙烯酰氧基琥珀酰亚胺(ASI)通过一步法制备了一种具有自修复功能的导电水凝胶。对该水凝胶红外、力学性能、导电性能等进行了表征。结果表明水凝胶结构内部形成了席夫碱结构;通过调整各组分配比,水凝胶的断裂伸长率最高可达1495.2%,抗拉强度最高可达300.3 kPa以及水凝胶的导电率可达到3.11 S/m,并且水凝胶具有较好的自修复功能。

     

  • 图  1  AEAM单体的合成路线

    Figure  1.  Synthetic routes for monomer AEAM.

    图  2  ASI单体的合成路线

    Figure  2.  Synthetic routes for ASI monomer.

    图  3  AEAM(a)和ASI(b)的核磁氢谱

    Figure  3.  1H NMR spectrum of AEAM (a) and ASI (b).

    图  4  PAM,PAS,PAESB-L水凝胶的全反射红外光谱

    Figure  4.  ATR-IR spectrum of PAM, PAS, PAESB-L.

    图  5  (a)水凝胶试样愈合不同时间的拉伸应力-应变曲线;(b)自修复后的水凝胶可以承受自身重量而不断裂的照片

    Figure  5.  (a) Tensile stress–strain curves of hydrogel samples healing for different time and (b) optical demonstration of a healed hydrogel withstanding its own weight

    图  6  不同ASI∶AEAM的质量比例下水凝胶的(a)弹性模量,抗拉强度以及(b)断裂伸长率(mAEAMmAM = 1∶12)

    Figure  6.  (a) Elastic Modulus, Tensile Strength and (b) Elongation at break of hydrogels with different m(ASI):m(AEAM) (mAEAMmAM = 1∶12).

    图  7  不同单体浓度的水凝胶的(a)应力-应变曲线和(b) 弹性模量

    Figure  7.  (a) Stress-strain curves and (b) Elastic modulus of hydrogels with different monomer concentration.

    图  8  (a)不同BORAX/AEAM的比例的水凝胶的应力-应变曲线以及(b)抗拉强度和弹性模量随m(BORAX)/m(AEAM)变化的趋势

    Figure  8.  (a) Stress-strain curves of hydrogels with different m(BORAX)/m(AEAM) and (b) Trends of tensile strength and elastic modulus with m(BORAX)/m(AEAM) mass percentage

    图  9  不同组分的水凝胶的交流阻抗曲线(a)和电导率(b)

    Figure  9.  (a) Electrochemical impedance spectra of hydrogels of various compositions; (b) Conductivities of hydrogels with different compositions

    表  1  不同单体比例的水凝胶的力学性能

    Table  1.   Mechanical properties of hydrogels with different monomer ratios

    SamplemAEAMmAMamASImAEAMbElastic module/%Tensile strength/kPaElastic modulus/kPa
    11∶31∶10114.3328.944.1
    21∶20154.0228.939.4
    31∶40201.0171.437.1
    41∶80374.0158.232.2
    51∶41∶10198.7244.338.6
    61∶20367.3173.334.7
    71∶40479.9155.732.1
    81∶80554.1146.332.4
    91∶61∶10465.7185.933.3
    101∶20595.5132.231.1
    111∶40711.4129.629.7
    121∶80924.1124.828.4
    131∶121∶10711.9159.528.9
    141∶20928.8120.126.6
    151∶401081.5110.723.1
    161∶801495.2103.66.0
    下载: 导出CSV

    表  2  不同m(BORAX)/m(AEAM)质量比

    Table  2.   Different m(BORAX)/m(AEAM).

    Sampleam(BORAX)/m(AEAM)
    118∶200
    227∶200
    336∶200
    449∶200
    554∶200
    a) Monomer mass fraction of these hydrogels were 20% and AM, AEAM, ASI monomer mass ratio was fixed at 960∶80∶1.
    下载: 导出CSV
  • [1] SUN H, ZHAO Y, JIAO S, et al. Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics[J]. Advanced Functional Materials, 2021, 31(24): 2101696.
    [2] . An in-vitro study of wireless inductive sensing and robust packaging for future implantable hydrogel-based glucose monitoring applications[J]. IEEE Sensors Journal, 2020, 20(4): 2145-2155.
    [3] GE G, LU Y, QU X, et al. Muscle-inspired self-healing hydrogels for strain and temperature sensor[J]. ACS Nano, 2020, 14(1): 218-228.
    [4] WU M, ZHANG Y, LIU Q, et al. A smart hydrogel system for visual detection of glucose[J]. Biosensors and Bioelectronics, 2019, 142: 111547.
    [5] CHEN D, WANG D, YANG Y, et al. Self-healing materials for next-generation energy harvesting and storage devices[J]. Advanced Energy Materials, 2017, 7(23): 1700890.
    [6] TONG X, TIAN Z, SUN J, et al. Self-healing flexible/stretchable energy storage devices[J]. Materials Today, 2021, 44: 78-104.
    [7] BUENGER D, TOPUZ F, GROLL J. Hydrogels in sensing applications[J]. Progress in Polymer Science, 2012, 37(12): 1678-1719.
    [8] WIENER C G, WANG C, LIU Y, et al. Nanostructure evolution during relaxation from a large step strain in a supramolecular copolymer-based hydrogel: a sans investigation[J]. Macromolecules, 2017, 50(4): 1672-1680.
    [9] GONG J P, KATSUYAMA Y, KUROKAWA T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Advanced Materials, 2003, 15(14): 1155-1158.
    [10] LIU Y J, CAO W T, MA M G, et al. Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks[J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25559-25570.
    [11] ZHANG H, XIA H, ZHAO Y. Poly(vinyl alcohol) hydrogel can autonomously self-heal[J]. ACS Macro Letters, 2012, 1(11): 1233-1236.
    [12] NAKAHATA M, TAKASHIMA Y, YAMAGUCHI H, et al. Redox-responsive self-healing materials formed from host-guest polymers[J]. Nature Communications, 2011, 2(1): 511.
    [13] WEI Z, HE J, LIANG T, et al. Autonomous self-healing of Poly(acrylic acid) hydrogels induced by the migration of ferric ions[J]. Polymer Chemistry, 2013, 4(17): 4601-4605.
    [14] DARABI M A, KHOSROZADEH A, MBELECK R, et al. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability[J]. Advanced Materials, 2017, 29(31): 1700533.
    [15] 刘慧清, 张鹏, 陈河操, 等. 壳聚糖仿生粘合剂的一步原位制备及性能研究[J]. 华东理工大学学报(自然科学版), 2022, 48(3): 324-331.
    [16] YESILYURT V, WEBBER M J, APPEL E A, et al. Injectable self-healing glucose-responsive hydrogels with pH-regulated mechanical properties[J]. Advanced Materials, 2016, 28(1): 86-91.
    [17] WEI Z, YANG J H, DU X J, et al. Dextran-based self-healing hydrogels formed by reversible Diels-Alder reaction under physiological conditions[J]. Macromolecular Rapid Communications, 2013, 34(18): 1464-1470.
    [18] SONG T, JIANG B, LI Y, et al. Self-healing materials: a review of recent developments[J]. ES Materials & Manufacturing, 2021, 14: 1-19.
    [19] ZOU Y, CHEN C, SUN Y, et al. Flexible, all-hydrogel supercapacitor with self-healing ability[J]. Chemical Engineering Journal, 2021, 418: 128616.
    [20] DAI X, HUANG L B, DU Y, et al. Self-healing flexible strain sensors based on dynamically cross-linked conductive nanocomposites[J]. Composites Communications, 2021, 24: 100654.
    [21] WANG Y, ZHANG H, ZHANG H, et al. Synergy coordination of cellulose-Based dialdehyde and carboxyl with Fe3+ recoverable conductive self-healing hydrogel for sensor[J]. Materials Science and Engineering: C, 2021, 125: 112094.
    [22] ZHAO L, ZHAO J, ZHANG F, et al. Highly stretchable, adhesive, and self-healing silk fibroin-dopted hydrogels for wearable sensors[J]. Advanced Healthcare Materials, 2021, 10(10): 2002083.
    [23] ZHU Y, LIN L, CHEN Y, et al. A self-healing, robust adhesion, multiple stimuli-response hydrogel for flexible sensors[J]. Soft Matter, 2020, 16(9): 2238-2248.
    [24] NARANJO A, MARTÍN C, LÓPEZ DÍAZ A, et al. Autonomous self-healing hydrogel with anti-drying properties and applications in soft robotics[J]. Applied Materials Today, 2020, 21: 100806.
    [25] LIU J, HUANG J, CAI Q, et al. Design of slidable polymer networks: a rational strategy to stretchable, rapid self-healing hydrogel electrolytes for flexible supercapacitors[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20479-20489.
    [26] MA M, YANG J, YE Z, et al. A facile strategy for synergistic integration of dynamic covalent bonds and hydrogen bonds to surmount the tradeoff between mechanical property and self-healing capacity of hydrogels[J]. Macromolecular Materials and Engineering, 2021, 306(2): 2000577.
    [27] INOUE A, YUK H, LU B, et al. Strong adhesion of wet conducting polymers on diverse substrates[J]. Science Advances, ${ref.ref_year}, 6(12): eaay5394.
    [28] WU M, CHEN J, MA Y, et al. Ultra elastic, stretchable, self-healing conductive hydrogels with tunable optical properties for highly sensitive soft electronic sensors[J]. Journal of Materials Chemistry A, 2020, 8: 24718-24733.
    [29] RIZZI V, ROMANAZZI F, GUBITOSA J, et al. Chitosan film as eco-friendly and recyclable bio-adsorbent to remove/recover diclofenac, ketoprofen, and their mixture from wastewater[J]. Biomolecules, 2019, 9(10): 571.
    [30] CHEN Q, ZHU L, CHEN H, et al. A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties[J]. Advanced Functional Materials, 2015, 25(10): 1598-1607.
    [31] DAI X, HUANG L B, DU Y, et al. Self-healing flexible strain sensors based on dynamically cross-linked conductive nanocomposites[J]. Composites Communications, 2021, 24: 100654.
    [32] ZHOU Z, QIAN C, YUAN W. Self-healing, anti-freezing, adhesive and remoldable hydrogel sensor with ion-liquid metal dual conductivity for biomimetic skin[J]. Composites Science and Technology, 2021, 203: 108608.
    [33] QIN T, LIAO W, YU L, et al. Recent progress in conductive self-healing hydrogels for flexible sensors[J]. Journal of Polymer Science, 2022, 4(1): 012002.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-16
  • 网络出版日期:  2022-08-31

目录

    /

    返回文章
    返回