高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

赖氨酰内切酶在大肠杆菌中的重组表达、复性及纯化

朱奕 徐名强 任燕娜 蔡孟浩

朱奕, 徐名强, 任燕娜, 蔡孟浩. 赖氨酰内切酶在大肠杆菌中的重组表达、复性及纯化[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220607001
引用本文: 朱奕, 徐名强, 任燕娜, 蔡孟浩. 赖氨酰内切酶在大肠杆菌中的重组表达、复性及纯化[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220607001
ZHU Yi, XU Mingqiang, REN Yanna, CAI Menghao. Recombinant Expression, Refolding, and Purification of Lysobacter enzymogenes Lys-C in Escherichia coli[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220607001
Citation: ZHU Yi, XU Mingqiang, REN Yanna, CAI Menghao. Recombinant Expression, Refolding, and Purification of Lysobacter enzymogenes Lys-C in Escherichia coli[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220607001

赖氨酰内切酶在大肠杆菌中的重组表达、复性及纯化

doi: 10.14135/j.cnki.1006-3080.20220607001
详细信息
    作者简介:

    朱奕:朱 奕(1996-),男,浙江宁波人,硕士生,主要研究方向:蛋白药物制备。E-mail:zhuyi0304@163.com

    通讯作者:

    任燕娜, E-mail:15026455240@163.com

    ;蔡孟浩, E-mail:cmh022199@ecust.edu.cn

  • 中图分类号: Q556

Recombinant Expression, Refolding, and Purification of Lysobacter enzymogenes Lys-C in Escherichia coli

  • 摘要: 在产酶溶杆菌来源的Lys-C成熟肽序列的N端和C端分别融合人工前肽 (MGSK) 和6×His标签,将密码子优化后的序列插入表达载体pET-28a。以IPTG诱导型启动子PT7控制Lys-C的高效表达,并针对重组菌株JM109DE3_PT7-LysC开展生物反应器高密度发酵生产Lys-C。然后收集和溶解包涵体得到Lys-C变性液,通过Sephadex G25层析脱除DTT,并在Lys-C复性液中添加前导肽 (pre-N-pro) 辅助成熟肽蛋白折叠。进一步,通过切向流过滤、Ni NTA-Sepharose亲和层析和Sephacryl S-100层析等一系列纯化步骤,获得高纯度的重组Lys-C。最后进行酶切三肽底物和门冬胰岛素前体检测,分析重组Lys-C的活性水平。重组Lys-C发酵产量为2.4 g/L,经复性和纯化后的终产量可达48 mg/L。添加80 mg/L pre-N-pro促进了重组Lys-C的复性,复性后酶活相比于未添加pre-N-pro时提升了4.8倍,最高可达到13.8 AU/L。经过多步纯化后,重组Lys-C的比酶活为10.2 AU/mg,且对于门冬胰岛素前体的酶切转化率可达93.5%。

     

  • 图  1  Lys-C和pre-N-pro的基因与蛋白序列

    Figure  1.  The gene and protein sequences of Lys-C and pre-N-pro

    图  2  质粒pET28a-LysC和pET28a-preNpro的构建与验证

    Figure  2.  The Construction and verification of plasmids pET28a-LysC and pET28a-preNpro

    图  3  LysC和pre-N-pro的诱导表达

    Figure  3.  The inducible expression of LysC and pre-N-pro

    图  4  Lys-C的复性

    Figure  4.  Refolding of LysC

    图  5  Lys-C的纯化

    Figure  5.  Purification of Lys-C

    图  6  Lys-C酶切胰岛素前体的HPLC图谱

    Figure  6.  The HPLC chromatograms of the insulin precursor digested by recombinant Lys-C

    表  1  本研究使用引物

    Table  1.   Primers used in this study

    PrimersSequence (5’ to 3’)
    T7lacO-F CACCATTAAGATCCGGCTGCTAAC
    T7lacO-R CCATGGTATATCTCCTTCTTAAAG
    T7lacOLysC-F AAGAAGGAGATATACCATGGGCAGCAAAGGTGTGAG
    T7lacOLysC-R GTTAGCAGCCGGATCTTAATGGTGGTGATGATGGTGAACTGG
    28aarmpNp-F TAAGAAGGAGATATACCATGAAACGCATTTGCGGTAG
    pNp28ahisarm-R TTAATGGTGGTGATGATGGTGTTTTTCGCCGCTGGCGG
    V28aUP-F GGAAGCAGCCCAGTAGTAGG
    VT7DO-R CAAGACCCGTTTAGAGGCCC
    V28aDO-R CGATGGCCCACTACGTGAAC
    下载: 导出CSV

    表  3  HPLC洗脱程序

    Table  3.   HPLC elution procedure

    Time/minAB
    062%38%
    2054%46%
    2554%46%
    2810%90%
    3262%38%
    40Stop Stop
    下载: 导出CSV

    表  2  比色法测酶活的操作方法

    Table  2.   Method for measuring Lys-C activity by chromogenic reaction using Bz-Lys-pNA as a substrate

    ReagentsControlLys-C sample
    A200 μL200 μL
    B20 μL20 μL
    30℃ water bath, preheat for 5 min
    C10 μL--
    D--10 μL
    Mix quickly, 30℃ water bath for 30 min
    E70 μL70 μL
    下载: 导出CSV

    表  4  Lys-C各步纯化结果

    Table  4.   Lys-C purification results of each step

    StepsVolume/mLProtein amount/mgRecovery/%
    Cell lysis--7600--
    Washing--2400--
    Denaturation130640--
    GFC (Sephadex G25)27055085.9
    TFF25043078.2
    NCAC409522.1
    UF205760.5
    GFC (Sephacryl S-100)424884.8
    下载: 导出CSV

    表  5  大肠杆菌重组表达Lys-C的产量结果

    Table  5.   Yield analysis of recombinant expression of Lys-C in E. coli.

    SourceHostPlasmidYieldLiterature
    AchromobacterE. coli lon-pKK233-20.48 mg/L1989,Ohara[21]
    AchromobacterE. coli JA221pKYN2000.3~0.4 mg/L2002,Kentaro[8]
    LysobacterE. coli JM109pGEM-T11 mg/L2002,Shigeru[11]
    LysobacterE. coli JM109pJOE24 mg/L2016,Stressler[22]
    PseudomonasE. coli BL21(DE3)pET-32a34.4 mg/L2016,Zhao[23]
    LysobacterE. coli JM109(DE3)pET-28a48 mg/LThis study
    下载: 导出CSV
  • [1] MASAKI T, NAKAMURA K, ISONO M, et al. A new proteolytic enzyme from Achromobacter lyticus M497-1[J]. Agricultural and Biological Chemistry, 1978, 42(7): 1443-1445.
    [2] JEKEL P A, WEIJER W J, BEINTEMA J J. Use of endoproteinase Lys-C from Lysobacter enzymogenes in protein sequence analysis[J]. Analytical Biochemistry, 1983, 134(2): 347-354. doi: 10.1016/0003-2697(83)90308-1
    [3] ENGEL S, HILL M, CABALLERO R, et al. Protease IV, a unique extracellular protease and virulence factor from Pseudomonas aeruginosa[J]. The Journal of Biological Chemistry, 1998, 273(27): 16792-16797. doi: 10.1074/jbc.273.27.16792
    [4] KAZUYUKI M, TATSUSHI O, HIROSHIGE T, et al. Achromobacter protease I-catalyzed conversion of porcine insulin into human insulin[J]. Biochemical and Biophysical Research Communications, 1980, 92(2): 396-402. doi: 10.1016/0006-291X(80)90346-0
    [5] CRISTINA C, MIREIA O, EDUARD S. Influence of the digestion technique, protease, and missed cleavage peptides in protein quantitation[J]. Journal of Proteome Research, 2014, 13(9): 3979-3986. doi: 10.1021/pr500294d
    [6] MAO Y, DALY T J, LI N. Lys-Sequencer: An algorithm for de novo sequencing of peptides by paired single residue transposed Lys-C and Lys-N digestion coupled with high-resolution mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2020, 34(3): 15-18.
    [7] KUHLMAN P, CHEN R, ALCANTARA J, et al. Rapid purification of Lys-C from Lysobacter enzymogenes cultures: a sequential chromatography technique[J]. Bioprocess International, 2009, 7(1): 28-38.
    [8] KENTARO S, SHIGEMI N, LI S L, et al. Electrostatic role of aromatic ring stacking in the pH-sensitive modulation of a chymotrypsin-type serine protease, Achromobacter protease I[J]. European Journal of Biochemistry, 2002, 269(16): 4152-4158. doi: 10.1046/j.1432-1033.2002.03110.x
    [9] ODA Y, KITAGAWA Y, YAMAGUCHI H, et al. Crystallization and preliminary X-ray diffraction analysis of two lysinal derivatives of Achromobacter protease I[J]. Acta Crystallographica. Section D, Biological Crystallography, 1996, 52(5): 1027-1029. doi: 10.1107/S0907444996006920
    [10] MASAKI T, FUJIHASHI T, SOEJIMA M. Effect of various inhibitors on the activity of Achromobacter protease I[J]. Journal of the Agricultural Chemical Society of Japan, 1984, 58(9): 865-870.
    [11] TSUNASAWA S, MASAKI T, HIROSE M, et al. The primary structure and structural characteristics of Achromobacter protease I, a lysine-specific serine protease[J]. The Journal of Biological Chemistry, 1989, 264(7): 3832-3839. doi: 10.1016/S0021-9258(19)84926-8
    [12] KUHLMAN P, CHEN R, ALCANTARA J, et al. Rapid purification of Lys-C from Lysobacter enzymogenes cultures: a sequential chromatography technique[J]. Bioprocess International, 2009, 7(1): 28-38.
    [13] SHIGERU C, JUNKO N, KOUSEI T, et al. Lysobacter strain with high lysyl endopeptidase production[J]. FEMS Microbiology Letters, 2002, 213(1): 13-20. doi: 10.1111/j.1574-6968.2002.tb11279.x
    [14] SHIGERU C, KENTARO S, KIYONOBU Y, et al. A second lysine-specific serine protease from Lysobacter sp. strain IB-9374[J]. Journal of Bacteriology, 2004, 186(15): 5093-5100. doi: 10.1128/JB.186.15.5093-5100.2004
    [15] NORIOKA S, OHTA S, OHARA T, et al. Identification of three catalytic triad constituents and Asp-225 essential for function of lysine-specific serine protease, Achromobacter protease I[J]. The Journal of Biological Chemistry, 1994, 269(25): 17025-17029. doi: 10.1016/S0021-9258(17)32514-0
    [16] CZAPINSKA H, OTLEWSKI J. Structural and energetic determinants of the S1-site specificity in serine proteases[J]. European Journal of Biochemistry, 1999, 260(3): 571-595. doi: 10.1046/j.1432-1327.1999.00160.x
    [17] AHMED K, CHOHNAN S, OHASHI H, et al. Purification, bacteriolytic activity, and specificity of β-lytic protease from Lysobacter sp. IB-9374[J]. Journal of Bioscience and Bioengineering, 2003, 95(1): 27-34. doi: 10.1016/S1389-1723(03)80144-5
    [18] INOUYE M. Intramolecular Chaperone: The Role of the pro-peptide in protein folding[J]. Enzyme, 1991, 45(5-6): 314-321. doi: 10.1159/000468904
    [19] RUAN B, HOSKINS J, BRYAN P N. Rapid folding of calcium-free subtilisin by a stabilized pro-domain mutant[J]. Biochemistry, 1999, 38(26): 8562-8571. doi: 10.1021/bi990362n
    [20] TRUHLAR S M, AGARD D A. The folding landscape of an alpha-lytic protease variant reveals the role of a conserved beta-hairpin in the development of kinetic stability[J]. Proteins, 2005, 61(1): 105-114. doi: 10.1002/prot.20525
    [21] OHARA T, MAKINO K, SHINAGAWA H, et al. Cloning, nucleotide sequence, and expression of Achromobacter protease I gene[J]. The Journal of Biological Chemistry, 1989, 264(34): 20625-20631. doi: 10.1016/S0021-9258(19)47109-3
    [22] STRESSLER T, EISELE T, MEYER S, et al. Heterologous expression and pro-peptide supported refolding of the high specific endopeptidase Lys-C[J]. Protein Expression and Purification, 2016, 118: 31-38. doi: 10.1016/j.pep.2015.09.024
    [23] ZHAO M Z, CAI M, WU F L, et al. Recombinant expression, refolding, purification and characterization of Pseudomonas aeruginosa protease IV in Escherichia coli[J]. Protein Expression and Purification, 2016, 126: 69-76. doi: 10.1016/j.pep.2016.05.019
    [24] FALZON L, PATEL S, CHEN Y J, et al. Autotomic behavior of the propeptide in propeptide-mediated folding of prosubtilisin E[J]. Journal of Molecular Biology, 2007, 366(2): 494-503. doi: 10.1016/j.jmb.2006.11.019
    [25] TRUHLAR S M, AGARD D A. The folding landscape of an alpha-lytic protease variant reveals the role of a conserved beta-hairpin in the development of kinetic stability[J]. Proteins, 2005, 61(1): 105-114. doi: 10.1002/prot.20525
    [26] PETER A, ASTRID M, WERNER H, et al. Atomic resolution structure of a lysine-specific endoproteinase from Lysobacter enzymogenes suggests a hydroxyl group bound to the oxyanion hole[J]. Acta Crystallographica D, Biological Crystallography, 2014, 70(7): 1832-1843. doi: 10.1107/S1399004714008463
    [27] BRAHIM A, JILL B. The activities of Achromobacter lysyl endopeptidase and Lysobacter lysyl endoproteinase as digestive enzymes for quantitative proteomics[J]. Rapid Communications in Mass Spectrometry, 2013, 27(14): 1669-1672. doi: 10.1002/rcm.6612
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  80
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07
  • 网络出版日期:  2022-08-26

目录

    /

    返回文章
    返回