Recombinant Expression, Refolding, and Purification of Lysobacter enzymogenes Lys-C in Escherichia coli
-
摘要: 在产酶溶杆菌来源的Lys-C成熟肽序列的N端和C端分别融合人工前肽 (MGSK) 和6×His标签,将密码子优化后的序列插入表达载体pET-28a。以IPTG诱导型启动子PT7控制Lys-C的高效表达,并针对重组菌株JM109DE3_PT7-LysC开展生物反应器高密度发酵生产Lys-C。然后收集和溶解包涵体得到Lys-C变性液,通过Sephadex G25层析脱除DTT,并在Lys-C复性液中添加前导肽 (pre-N-pro) 辅助成熟肽蛋白折叠。进一步,通过切向流过滤、Ni NTA-Sepharose亲和层析和Sephacryl S-100层析等一系列纯化步骤,获得高纯度的重组Lys-C。最后进行酶切三肽底物和门冬胰岛素前体检测,分析重组Lys-C的活性水平。重组Lys-C发酵产量为2.4 g/L,经复性和纯化后的终产量可达48 mg/L。添加80 mg/L pre-N-pro促进了重组Lys-C的复性,复性后酶活相比于未添加pre-N-pro时提升了4.8倍,最高可达到13.8 AU/L。经过多步纯化后,重组Lys-C的比酶活为10.2 AU/mg,且对于门冬胰岛素前体的酶切转化率可达93.5%。Abstract: To develop a high-efficiency recombinant expression and purification strategy for lysyl endopeptidase (Lys-C), and present a new choice for breaking the bottleneck of Lys-C generated by natural strains, which has a poor yield and high cost. The artificial pro-peptide (MGSK) and the 6×His tag were fused to the N-terminus and C-terminus of the Lys-C mature peptide gene sequence from Lysobacter enzymogenes, respectively, and then the codon-optimized sequence was inserted into plasmid pET-28a. The Lys-C was efficiently expressed in the recombinant strain JM109DE3_PT7- LysC and controlled by the IPTG-inducible promoter PT7. The inclusion bodies were collected by high-density fermentation in a bioreactor, after which they were solubilized to obtain the Lys-C denaturing solution and DTT was removed by Sephadex G25 chromatography. Then the pre-pro peptide (pre-N-pro) was added to Lys-C refolding solution to assist in the folding of the mature protein. Further, the large volume Lys-C refolding solution was concentrated using tangential flow filtration, followed by a multi-step purification process of Ni NTA-Sepharose affinity chromatography, ultrafiltration, and Sephacryl S-100 chromatography to obtain high-purity recombinant Lys-C. Finally, the activity of recombinant Lys-C was measured by chromogenic reaction and digestion of insulin aspart precursors. The recombinant Lys-C fermentation yield was achieved at 2.4 g/L, and the final yield reached 48 mg/L after renaturation and purification. The Lys-C enzyme activity was improved by addition of 80 mg/L of pre-N-pro and reached up to 13.8 AU/L, which increased by 4.8-fold. The specific enzyme activity of Lys-C achieved 10.2 AU/mg after multi-step purification. And the digestion efficiency of Lys-C to insulin precursors reached 93.5%. In this study, recombinant Lys-C with high yield and good activity was obtained and allowed for accurate digestion of the insulin precursors, and this provides a reference for Lys-C recombinant expression and potential industrial application.
-
Key words:
- Lysyl endopeptidase /
- Recombinant expression /
- Renaturation /
- Purification /
- Activity analysis
-
表 1 本研究使用引物
Table 1. Primers used in this study
Primers Sequence (5’ to 3’) T7lacO-F CACCATTAAGATCCGGCTGCTAAC T7lacO-R CCATGGTATATCTCCTTCTTAAAG T7lacOLysC-F AAGAAGGAGATATACCATGGGCAGCAAAGGTGTGAG T7lacOLysC-R GTTAGCAGCCGGATCTTAATGGTGGTGATGATGGTGAACTGG 28aarmpNp-F TAAGAAGGAGATATACCATGAAACGCATTTGCGGTAG pNp28ahisarm-R TTAATGGTGGTGATGATGGTGTTTTTCGCCGCTGGCGG V28aUP-F GGAAGCAGCCCAGTAGTAGG VT7DO-R CAAGACCCGTTTAGAGGCCC V28aDO-R CGATGGCCCACTACGTGAAC 表 3 HPLC洗脱程序
Table 3. HPLC elution procedure
Time/min A B 0 62% 38% 20 54% 46% 25 54% 46% 28 10% 90% 32 62% 38% 40 Stop Stop 表 2 比色法测酶活的操作方法
Table 2. Method for measuring Lys-C activity by chromogenic reaction using Bz-Lys-pNA as a substrate
Reagents Control Lys-C sample A 200 μL 200 μL B 20 μL 20 μL 30℃ water bath, preheat for 5 min C 10 μL -- D -- 10 μL Mix quickly, 30℃ water bath for 30 min E 70 μL 70 μL 表 4 Lys-C各步纯化结果
Table 4. Lys-C purification results of each step
Steps Volume/mL Protein amount/mg Recovery/% Cell lysis -- 7600 -- Washing -- 2400 -- Denaturation 130 640 -- GFC (Sephadex G25) 270 550 85.9 TFF 250 430 78.2 NCAC 40 95 22.1 UF 20 57 60.5 GFC (Sephacryl S-100) 42 48 84.8 表 5 大肠杆菌重组表达Lys-C的产量结果
Table 5. Yield analysis of recombinant expression of Lys-C in E. coli.
Source Host Plasmid Yield Literature Achromobacter E. coli lon- pKK233-2 0.48 mg/L 1989,Ohara[21] Achromobacter E. coli JA221 pKYN200 0.3~0.4 mg/L 2002,Kentaro[8] Lysobacter E. coli JM109 pGEM-T 11 mg/L 2002,Shigeru[11] Lysobacter E. coli JM109 pJOE 24 mg/L 2016,Stressler[22] Pseudomonas E. coli BL21(DE3) pET-32a 34.4 mg/L 2016,Zhao[23] Lysobacter E. coli JM109(DE3) pET-28a 48 mg/L This study -
[1] MASAKI T, NAKAMURA K, ISONO M, et al. A new proteolytic enzyme from Achromobacter lyticus M497-1[J]. Agricultural and Biological Chemistry, 1978, 42(7): 1443-1445. [2] JEKEL P A, WEIJER W J, BEINTEMA J J. Use of endoproteinase Lys-C from Lysobacter enzymogenes in protein sequence analysis[J]. Analytical Biochemistry, 1983, 134(2): 347-354. doi: 10.1016/0003-2697(83)90308-1 [3] ENGEL S, HILL M, CABALLERO R, et al. Protease IV, a unique extracellular protease and virulence factor from Pseudomonas aeruginosa[J]. The Journal of Biological Chemistry, 1998, 273(27): 16792-16797. doi: 10.1074/jbc.273.27.16792 [4] KAZUYUKI M, TATSUSHI O, HIROSHIGE T, et al. Achromobacter protease I-catalyzed conversion of porcine insulin into human insulin[J]. Biochemical and Biophysical Research Communications, 1980, 92(2): 396-402. doi: 10.1016/0006-291X(80)90346-0 [5] CRISTINA C, MIREIA O, EDUARD S. Influence of the digestion technique, protease, and missed cleavage peptides in protein quantitation[J]. Journal of Proteome Research, 2014, 13(9): 3979-3986. doi: 10.1021/pr500294d [6] MAO Y, DALY T J, LI N. Lys-Sequencer: An algorithm for de novo sequencing of peptides by paired single residue transposed Lys-C and Lys-N digestion coupled with high-resolution mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2020, 34(3): 15-18. [7] KUHLMAN P, CHEN R, ALCANTARA J, et al. Rapid purification of Lys-C from Lysobacter enzymogenes cultures: a sequential chromatography technique[J]. Bioprocess International, 2009, 7(1): 28-38. [8] KENTARO S, SHIGEMI N, LI S L, et al. Electrostatic role of aromatic ring stacking in the pH-sensitive modulation of a chymotrypsin-type serine protease, Achromobacter protease I[J]. European Journal of Biochemistry, 2002, 269(16): 4152-4158. doi: 10.1046/j.1432-1033.2002.03110.x [9] ODA Y, KITAGAWA Y, YAMAGUCHI H, et al. Crystallization and preliminary X-ray diffraction analysis of two lysinal derivatives of Achromobacter protease I[J]. Acta Crystallographica. Section D, Biological Crystallography, 1996, 52(5): 1027-1029. doi: 10.1107/S0907444996006920 [10] MASAKI T, FUJIHASHI T, SOEJIMA M. Effect of various inhibitors on the activity of Achromobacter protease I[J]. Journal of the Agricultural Chemical Society of Japan, 1984, 58(9): 865-870. [11] TSUNASAWA S, MASAKI T, HIROSE M, et al. The primary structure and structural characteristics of Achromobacter protease I, a lysine-specific serine protease[J]. The Journal of Biological Chemistry, 1989, 264(7): 3832-3839. doi: 10.1016/S0021-9258(19)84926-8 [12] KUHLMAN P, CHEN R, ALCANTARA J, et al. Rapid purification of Lys-C from Lysobacter enzymogenes cultures: a sequential chromatography technique[J]. Bioprocess International, 2009, 7(1): 28-38. [13] SHIGERU C, JUNKO N, KOUSEI T, et al. Lysobacter strain with high lysyl endopeptidase production[J]. FEMS Microbiology Letters, 2002, 213(1): 13-20. doi: 10.1111/j.1574-6968.2002.tb11279.x [14] SHIGERU C, KENTARO S, KIYONOBU Y, et al. A second lysine-specific serine protease from Lysobacter sp. strain IB-9374[J]. Journal of Bacteriology, 2004, 186(15): 5093-5100. doi: 10.1128/JB.186.15.5093-5100.2004 [15] NORIOKA S, OHTA S, OHARA T, et al. Identification of three catalytic triad constituents and Asp-225 essential for function of lysine-specific serine protease, Achromobacter protease I[J]. The Journal of Biological Chemistry, 1994, 269(25): 17025-17029. doi: 10.1016/S0021-9258(17)32514-0 [16] CZAPINSKA H, OTLEWSKI J. Structural and energetic determinants of the S1-site specificity in serine proteases[J]. European Journal of Biochemistry, 1999, 260(3): 571-595. doi: 10.1046/j.1432-1327.1999.00160.x [17] AHMED K, CHOHNAN S, OHASHI H, et al. Purification, bacteriolytic activity, and specificity of β-lytic protease from Lysobacter sp. IB-9374[J]. Journal of Bioscience and Bioengineering, 2003, 95(1): 27-34. doi: 10.1016/S1389-1723(03)80144-5 [18] INOUYE M. Intramolecular Chaperone: The Role of the pro-peptide in protein folding[J]. Enzyme, 1991, 45(5-6): 314-321. doi: 10.1159/000468904 [19] RUAN B, HOSKINS J, BRYAN P N. Rapid folding of calcium-free subtilisin by a stabilized pro-domain mutant[J]. Biochemistry, 1999, 38(26): 8562-8571. doi: 10.1021/bi990362n [20] TRUHLAR S M, AGARD D A. The folding landscape of an alpha-lytic protease variant reveals the role of a conserved beta-hairpin in the development of kinetic stability[J]. Proteins, 2005, 61(1): 105-114. doi: 10.1002/prot.20525 [21] OHARA T, MAKINO K, SHINAGAWA H, et al. Cloning, nucleotide sequence, and expression of Achromobacter protease I gene[J]. The Journal of Biological Chemistry, 1989, 264(34): 20625-20631. doi: 10.1016/S0021-9258(19)47109-3 [22] STRESSLER T, EISELE T, MEYER S, et al. Heterologous expression and pro-peptide supported refolding of the high specific endopeptidase Lys-C[J]. Protein Expression and Purification, 2016, 118: 31-38. doi: 10.1016/j.pep.2015.09.024 [23] ZHAO M Z, CAI M, WU F L, et al. Recombinant expression, refolding, purification and characterization of Pseudomonas aeruginosa protease IV in Escherichia coli[J]. Protein Expression and Purification, 2016, 126: 69-76. doi: 10.1016/j.pep.2016.05.019 [24] FALZON L, PATEL S, CHEN Y J, et al. Autotomic behavior of the propeptide in propeptide-mediated folding of prosubtilisin E[J]. Journal of Molecular Biology, 2007, 366(2): 494-503. doi: 10.1016/j.jmb.2006.11.019 [25] TRUHLAR S M, AGARD D A. The folding landscape of an alpha-lytic protease variant reveals the role of a conserved beta-hairpin in the development of kinetic stability[J]. Proteins, 2005, 61(1): 105-114. doi: 10.1002/prot.20525 [26] PETER A, ASTRID M, WERNER H, et al. Atomic resolution structure of a lysine-specific endoproteinase from Lysobacter enzymogenes suggests a hydroxyl group bound to the oxyanion hole[J]. Acta Crystallographica D, Biological Crystallography, 2014, 70(7): 1832-1843. doi: 10.1107/S1399004714008463 [27] BRAHIM A, JILL B. The activities of Achromobacter lysyl endopeptidase and Lysobacter lysyl endoproteinase as digestive enzymes for quantitative proteomics[J]. Rapid Communications in Mass Spectrometry, 2013, 27(14): 1669-1672. doi: 10.1002/rcm.6612 -