Winter Operation and Anti-Freezing Research of Indirect Air-Cooling Tower Based on Coupling Calculation Between Ambient Wind Temperature and Cooling Water Temperature
-
摘要: 间接空冷塔是空冷发电机组的重要冷端设备,其换热性能直接影响着整个发电机组的运行情况。本文针对宁夏某电厂的双间接空冷塔系统,在Fluent软件中通过使用用户自定义函数(UDF)对其进行了环境风温-冷却水温的实时耦合计算,进而对其在冬季大风条件下的冻结风险进行了研究。结果表明:耦合计算模型具有较好的精度,与各项实测数据相比误差均在5%以内。环境侧风会增加各扇段出口水温的不均匀度,主要表现为迎风扇段出口水温急剧降低。减小迎风扇段的百叶窗开度可提升其冷却水出口温度,但同时会使背风扇段出口水温骤降。当同时减小迎风与背风扇段百叶窗开度时,各扇段出口水温回升且分布更加均匀,整塔冻结风险普遍降低。Abstract: Because of the advantage of saving water resources, the indirect air-cooling tower has been widely used in thermal power generating units in north China. Indirect air-cooling tower is an important cold side equipment of air-cooling generator unit. Its heat transfer performance directly affects the operation of the whole generator unit. Therefore, it is important to study the factors affecting the heat transfer performance of indirect air-cooling tower, especially the ambient crosswind, which has the greatest influence on its performance. In this research, by using user-defined function (UDF) to calculate the real-time coupling of ambient wind temperature and cooling water temperature, the dual-indirect air-cooling tower system of a Ningxia power plant was simulated in Fluent software. Then the freezing risk of the system was researched under strong wind conditions in winter. The results show that the coupling calculation model has superior accuracy and the error is less than 5% compared with the measured data. Ambient crosswind will increase the unevenness of outlet water temperature of each sector, which is mainly manifested as the sharp decrease of outlet water temperature in windward sectors. Reducing the shutters’ opening of the windward sectors can increase the cooling water outlet temperature, but at the same time, the water temperature of the outlet in the leeward sectors will drop sharply. When the shutters’ opening of windward and leeward sectors are reduced in the meantime, the outlet water temperature of each sector rises and distributes more evenly, and the freezing risk of the whole tower is generally reduced.
-
表 1 标准参数与模拟计算结果对比
Table 1. Comparison between standard parameters and simulation results
Item Heat transfer/
MWDraught/
PaAir mass flow/
kg·s−1Outlet air velocity/
m·s−1Outlet water
temperature/ ℃Air temperature
in tower/ ℃Standard values 1200.6 139 59708 6.2 32.5 38.8 Calculated values 1206.2 137 60385 5.9 32.4 40.0 Errors/% 0.04% 1.4% 1.1% 4.8% 0.3% 3.1% 表 2 各扇段百叶窗开度调节方案
Table 2. Adjustment scheme to shutter opening of each sector
Sector type Serial number Opening degree/% Windward 11 12 1 10 Leeward 5 6 7 10 Side 2 4 8 10 20 3 9 100 -
[1] 张庆, 王学生, 阮伟程, 等. 蒸发式空冷器低密度翅片管束干工况换热及阻力特性[J]. 华东理工大学学报(自然科学版), 2017, 43(4): 578-583. doi: 10.14135/j.cnki.1006-3080.2017.04.019 [2] 潘荔, 刘志强, 张博. 中国火电节水现状分析及措施建议[J]. 中国电力, 2017, 50(11): 158-163. [3] 贾斌, 李晓波, 张维蔚. 表面式间接空冷系统冷却水流量优化研究[J]. 汽轮机技术, 2021, 63(3): 230-234. doi: 10.3969/j.issn.1001-5884.2021.03.021 [4] GOUDARZI M A. Proposing a new technique to enhance thermal performance and reduce structural design wind loads for natural drought cooling towers[J]. Energy, 2013, 62: 164-172. doi: 10.1016/j.energy.2013.09.033 [5] GOUDARZI M, KEIMANESH R. Numerical analysis on overall performance of Savonius turbines adjacent to a natural draft cooling tower[J]. Energy Conversion and Management, 2015, 99: 41-49. doi: 10.1016/j.enconman.2015.04.027 [6] 向同琼, 田松峰. 间接空冷塔内外流动和传热性能的数值模拟研究[J]. 电力科学与工程, 2013, 29(12): 58-63,76. doi: 10.3969/j.issn.1672-0792.2013.12.011 [7] WANG W L, ZHANG H, LIU P, et al. The cooling performance of a natural draft dry cooling tower under crosswind and an enclosure approach to cooling efficiency enhancement[J]. Applied Energy, 2017, 186: 336-346. doi: 10.1016/j.apenergy.2016.02.007 [8] 林闽城, 华敏, 王林林, 等. 不同环境风速下间接空冷塔性能的模拟分析[J]. 电站系统工程, 2020, 36(6): 5-7. [9] LIAO H T, YANG L J, DU X Z, et al. Influences of height to diameter ratios of dry-cooling tower upon thermo-flow characteristics of indirect dry cooling system[J]. International Journal of Thermal Sciences, 2015, 94: 178-192. doi: 10.1016/j.ijthermalsci.2015.03.004 [10] 王蓝婧, 刘康, 付文锋, 等. 660MW SCAL型间接空冷塔夏季安全运行改造方案研究[J]. 动力工程学报, 2018, 38(1): 55-61,68. [11] 卢承斌, 姚永灵, 张泰岩, 等. 基于数值模拟技术的电站冷却塔性能优化[J]. 中国测试, 2022, 48(1): 168-176. [12] 卫慧敏, 杜小泽, 杨立军, 等. 大型间接空冷塔塔形优化[J]. 热力发电, 2017, 46(11): 50-56. [13] MA H, SI F, KONG Y, et al. A new theoretical method for predicating the partload performance of natural draft dry cooling towers[J]. Applied Thermal Engineering, 2015, 91: 1106-1115. doi: 10.1016/j.applthermaleng.2015.08.104 [14] 毛明策, 王娟, 胡进宝. 夏季昼间逆温对间接空冷塔散热量的影响[J]. 热力发电, 2020, 49(11): 147-152. doi: 10.19666/j.rlfd.202001090 [15] 韩玉霞, 李鑫, 赵爽. 350MW超临界间接空冷机组冬季防冻措施研究[J]. 电站辅机, 2016, 37(2): 23-26. doi: 10.3969/j.issn.1672-0210.2016.02.007 [16] 孟令国, 杨芳, 陈承宪, 等. 严寒地区间接空冷塔防冻措施研究[J]. 电力勘测设计, 2021(S1): 13-18. doi: 10.13500/j.dlkcsj.issn1671-9913.2021.S1.003 [17] 杨晓茹. 间接空冷系统防冻运行性能研究[D]. 华北电力大学(北京), 2019. [18] 王伟佳, 陈磊, 孔艳强, 等. 电站间接空冷系统防冻高效运行控制逻辑及数值验证[J]. 中国电机工程学报, 2022, 42(6): 2258-2268. [19] 王丰力. 空冷散热器管束防冻特性实验及模拟[D]. 北京: 华北电力大学, 2021. [20] 赵佳骏, 华敏, 王飞, 等. 表凝式间接空冷系统冬季运行优化研究[J]. 节能技术, 2020, 38(5): 449-453. doi: 10.3969/j.issn.1002-6339.2020.05.013 [21] 刘万旺, 许志美, 宗原, 等. 顺排管束流动和传热数值模拟[J]. 华东理工大学学报(自然科学版), 2019, 45(1): 15-22. doi: 10.14135/j.cnki.1006-3080.20180302002 [22] 许叶龙, 刘迎圆, 惠虎, 等. 固液混合过程的数值模拟及实验研究[J]. 华东理工大学学报(自然科学版), 2019, 45(4): 675-680. doi: 10.14135/j.cnki.1006-3080.20180709001 [23] 李非, 路婷婷, 吴正人, 等. 空冷岛对周围大气流场影响数值模拟[J]. 热力发电, 2016, 45(11): 82-87. doi: 10.3969/j.issn.1002-3364.2016.11.082 -