Copolymerization of Ethylene and Vinyl Trimethoxysilane with α-diimine Nickel (II) Catalysts
-
摘要: 采用一系列不同结构的α-二亚胺镍(Ⅱ)催化剂,在倍半乙基氯化铝(EASC)作用下,催化乙烯和乙烯基三甲氧基硅烷(VTMoS)共聚。研究了催化剂结构、VTMoS浓度、催化剂用量、Al/Ni摩尔比、乙烯压力、聚合时间和溶剂等对共聚的影响,得到了最优化的催化工艺条件。采用高温核磁(NMR)、傅利叶红外光谱(FTIR)和差示扫描量热分析(DSC)表征了共聚物的微观结构和熔点,等离子体发射光谱测定了共聚物中的硅含量,平衡溶胀法分析了共聚物的交联程度以及共聚物交联网络的均匀性。研究结果表明,以 C4 为催化剂,乙烯压力为2~3 MPa,催化活性高达106 g/(molNi·h),共聚物中硅含量在0.8%~2.1%。Abstract: A series of α-diimine nickel (Ⅱ) catalysts [(2,6-C6H3R2)-N=C(R1)-C(R1)=N-(2,6-C6H3R2)]NiBr2 ( C1 : R1 = H, R2 = CH3, C2 : R1 = H, R2 = iPr, C3 : R1 = CH3, R2 = CH3, C4 : R1 = CH3, R2 = iPr, C5 : R1 = acenaphthyl, R2 = iPr), in the presence of ethylaluminum sesquichloride (EASC) as cocatalyst, were applied in the copolymerization of ethylene and vinyl trimethoxysilane (VTMoS). The effects of polymerization parameters, in which VTMoS concentration, catalyst dosage, molar ration of Al/Ni (nAl/nNi), ethylene pressure, reaction time and solvents were varied on the copolymerization were investigated with C4 as a model catalyst. The optimized catalytic reaction conditions, in which ([VTMoS] = 0.5 mol/L, 5 μmol catalyst, nAl/nNi = 400, 1 MPa pressure, 25 ℃, for 0.5 h, toluene as solvent were obtained. The influence of the catalyst structures on the copolymerization were explored under the optimized conditions. High temperature 1H, 13C-NMR, Fourier infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were used to characterize the microstructure of the copolymers. Inductively coupled plasma (ICP) was applied to determine the silicon content of the copolymers. Equilibrium swelling method was used to study the crosslinking degree of copolymers. The results show that the catalytic activity of C4 reaches to 106 g/(molNi·h) in toluene and ethylene pressure of 2~3 MPa. With the increase of steric hindrance of α-diimine skeleton structure, the crosslinking degree of copolymer increases and the crosslinking network become more uniform. The contents of silicon in copolymer are in the range of 0.8% ~ 2.1%.
-
Key words:
- α-diimine nickel catalyst /
- ethylene /
- vinyl trimethoxysilane /
- copolymerization /
- functional polyolefin
-
表 1 反应条件对催化剂C4催化乙烯/VTMoS共聚合的影响
Table 1. Influence of reaction parameters on copolymerization of ethylene/VTMoS by catalyst C4
Entry [Si]/
(mol/L)[Cat]/
μmolnAl/nNi PC2H2
/MPat/
hActivity/
(105g/mol Ni·h)f a % gel a Mc a
g/mol1 0 5 400 1 1 7.89 - - - 2 0.50 5 400 1 1 6.53 11.39 96.95 2902.25 3 1.00 5 400 1 1 3.24 10.26 65.48 2382.63 4 1.50 5 400 1 1 0.02 - - - 5 0.50 2.5 400 1 1 2.12 9.49 98.68 2048.10 6 0.50 10 400 1 1 3.26 7.01 96.34 1126.44 7 0.50 5 200 1 1 4.33 6.90 98.92 1092.69 8 0.50 5 800 1 1 6.51 10.15 89.93 2332.06 9 0.50 5 1000 1 1 9.01 6.48 89.47 961.30 10 0.50 5 400 0.5 1 1.19 5.13 95.91 589.23 11 0.50 5 400 2 1 10.41 12.37 91.46 3394.02 12 0.50 5 400 3 1 10.00 22.18 90.06 9858.99 13 0.50 5 400 1 0.5 7.50 6.90 97.33 1093.48 14 0.50 5 400 1 2 3.18 7.14 80.92 1169.58 15 0.50 5 400 1 4 2.04 8.34 81.75 1593.30 16 0.50 5 400 1 1 trance - - - 17 0.50 5 400 1 1 11.63 23.38 84.66 10829.44 Co-catalyst: AlEt2Cl; Entries 1-15, solvent: toluene, entry 16, solvent: hexane; entry 17, solvent: dichloromethane. Temperature: 25°C; V (toluene)=50 mL; a. f, % gel and Mc were determined by solvent swelling and extraction of the sample under refluxing p-xylene (139 °C). 表 2 催化剂结构对乙烯/VTMoS共聚的影响
Table 2. Influence of catalyst structures on ethylene/VTMoS copolymerization
Entry Catalyst
structureActivity/
(105g·mol−1Ni·h−1)f a gel a/% Mc a/(g·mol−1) Sib/% 1 C1 0.14 - - - - 2 C2 0.72 13.85 70.76 4188.20 1.7 3 C3 0.70 6.90 47.97 1091.62 1.2 4 C4 6.53 11.39 96.95 2902.25 2.1 5 C5 0.84 9.94 73.42 2240.58 0.82 Catalyst dosage: 5 μmol; [VTMoS] = 0.50 mol/L; nAl/nNi = 400, Ethylene pressure: 1 MPa; Temperature: 25 °C; Time: 1 h; V (total) = 50 mL; Solvent: toluene; a. f, % gel and Mc were determined by solvent swelling and extraction of the sample under refluxing p-xylene (139 °C). b. Si % was determined by inductively coupled plasma (ICP). -
[1] 王佳, 高榕, 刘东兵. 乙烯与极性单体共聚合的最新研究进展[J]. 化学工程与装备, 2019(8): 251-253. doi: 10.19566/j.cnki.cn35-1285/tq.2019.08.104 [2] FU X, ZHANG L J, TANAKA R, et al. Highly robust nickel catalysts containing anilinonaphthoquinone ligand for copolymerization of ethylene and polar monomers[J]. Macromolecules, 2017, 50(23): 9216-9221. doi: 10.1021/acs.macromol.7b01947 [3] ZHANG Y P, MU H L, PAN L, et al. Robust bulky [P, O] neutral nickel catalysts for copolymerization of ethylene with polar vinyl monomers[J]. ACS Catalysis, 2018, 8(7): 5963-5976. doi: 10.1021/acscatal.8b01088 [4] 李永清, 王凡, 曹育才. 后过渡金属配合物催化烯烃-极性单体共聚[J]. 有机化学, 2021, 41(4): 1396-1433. [5] ZHANG X F, CHEN S T, LI H Y, et al. Copolymerizations of ethylene and polar comonomers with bis(phenoxyketimine) group IV complexes: Effects of the central metal properties[J]. Journal of Polymer Science: Part A. Polymer Chemistry, 2007, 45(1): 59-68. doi: 10.1002/pola.21804 [6] 杨木泉, 毛骏, 董志鑫, 等. 两亲性PS-b-PEG嵌段共聚物刷的合成及响应行为[J]. 高等学校化学学报, 2012, 33(12): 2816-2821. doi: 10.7503/cjcu20120114 [7] HAGIHARA H, ISHIHARA T, THE BAN H, et al. Precise control of microstructure of functionalized polypropylene synthesized by the ansa-zirconocene/MAO catalysts[J]. Journal of Polymer Science:Part A:Polymer Chemistry, 2008, 46(5): 1738-1748. doi: 10.1002/pola.22516 [8] MU J S, YANG F, LIU Z S, et al. Polyethylene-block-poly(ε-caprolactone) diblock copolymers: Synthesis and compatibility[J]. Polymer International, 2014, 63(12): 2017-2022. doi: 10.1002/pi.4754 [9] 张丹枫, 张玉军, 喻国聪, 等. 水杨醛亚胺镍配合物催化乙烯与甲基丙烯酸甲酯的共聚反应[J]. 高等学校化学学报, 2017, 38(11): 2082-2088. doi: 10.7503/cjcu20170256 [10] LEBLANC A, GRAU E, BROYER J P, et al. Homo- and copolymerizations of (meth)Acrylates with olefins (styrene, ethylene) using neutral nickel complexes: A dual radical/catalytic pathway[J]. Macromolecules, 2011, 44(9): 3293-3301. doi: 10.1021/ma200158n [11] TAHMOURESILERD B, XIAO D, DO L H. Rigidifying cation-tunable nickel catalysts increases activity and polar monomer incorporation in ethylene and methyl acrylate copolymerization[J]. Inorganic Chemistry, 2021, 60(24): 19035-19043. doi: 10.1021/acs.inorgchem.1c02888 [12] WU F, FOLEY S R, BURNS C T, et al. Acrylonitrile insertion reactions of cationic palladium alkyl complexes[J]. Journal of the American Chemical Society, 2005, 127(6): 1841-1853. doi: 10.1021/ja044122t [13] LEICHT H, GÖTTKER-SCHNETMANN I, MECKING S. Incorporation of vinyl chloride in insertion polymerization[J]. Angewandte Chemie International Edition, 2013, 52(14): 3963-3966. doi: 10.1002/anie.201209724 [14] XIA J, ZHANG Y, ZHANG J, et al. High-performance neutral phosphine-sulfonate nickel(II) catalysts for efficient ethylene polymerization and copolymerization with polar monomers[J]. Organometallics, 2019, 38(5): 1118-1126. doi: 10.1021/acs.organomet.8b00916 [15] 高自宏, 范星河, 陈小芳, 等. 新型含硅聚芳醚酮的合成与表征[J]. 高等学校化学学报, 2005, 26(08): 1579-1581. doi: 10.3321/j.issn:0251-0790.2005.08.041 [16] AMIN S B, MARKS T J. Alkenylsilane structure effects on mononuclear and binuclear organotitanium-mediated ethylene polymerization: scope and mechanism of simultaneous polyolefin branch and functional group introduction[J]. Journal of the American Chemical Society, 2007, 129(10): 2938-2953. doi: 10.1021/ja0675292 [17] LIU J Y, NOMURA K. Efficient functional group introduction into polyolefins by copolymerization of ethylene with allyltrialkylsilane using nonbridged half-titanocenes[J]. Macromolecules, 2008, 41(4): 1070-1072. doi: 10.1021/ma800031h [18] LIPPONEN S H, SEPPÄLÄ J V. Ethylenebis(indenyl)zirconium dichloride/methylaluminoxane-catalyzed copolymerization of ethylene and 1-alkene-n-trimethylsilanes[J]. Organometallics, 2011, 30(3): 528-533. doi: 10.1021/om100900f [19] PETZETAKIS N, STONE G M, BALSARA N P. Synthesis of well-defined polyethylene-polydimethylsiloxane-polyethylene triblock copolymers by diimide-based hydrogenation of polybutadiene blocks[J]. Macromolecules, 2014, 47(13): 4151-4159. doi: 10.1021/ma500686k [20] 刘仪, 许晓洲, 莫松, 等. 含硅氧烷结构聚酰亚胺树脂的耐热稳定性及高温结构演变[J]. 高等学校化学学报, 2019, 40(1): 187-194. doi: 10.7503/cjcu20180342 [21] 张勇杰, 樊明帅, 李晓佩, 等. 含硅功能化聚烯烃: 合成及应用[J]. 化学进展, 2020, 32(1): 84-92. [22] CIOLINO A E, GALLAND G B, FERREIRA M L, et al. Novel synthesis of polyethylene–poly(dimethylsiloxane) copolymers with a metallocene catalyst[J]. Journal of Polymer Science:Part A:Polymer Chemistry, 2004, 42(10): 2462-2473. doi: 10.1002/pola.20066 [23] CIOLINO A, SAKELLARIOU G, PANTAZIS D, et al. Synthesis and characterization of model diblock copolymers of poly(dimethylsiloxane) with poly(1, 4-butadiene) or poly(ethylene)[J]. Journal of Polymer Science:Part A:Polymer Chemistry, 2006, 44(5): 1579-1590. doi: 10.1002/pola.21252 [24] ZIMMER S, SCHOBEL A, HALBACH T, et al. New curable propylene copolymers containing tert-butoxysilane side groups[J]. Macromolecular Rapid Communications, 2013, 34(3): 221-226. doi: 10.1002/marc.201200537 [25] XU Z X, JIE S Y, LI B G. Well-defined pe-b-pdms diblock copolymers via the combination of thiolene click and esterification reactions: Facile synthesis and compatibilization for hdpe/silicone oil blends[J]. Journal of Polymer Science:Part A:Polymer Chemistry, 2014, 52(22): 3205-3212. doi: 10.1002/pola.27381 [26] JOHNSON L K, MECKING S, BROOKHART M, Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts[J]. Journal of the American Chemical Society, 1996, 118(1): 267-268. [27] WU F, FOLEY S R, BURNS C T, et al. Acrylonitrile insertion reactions of cationic palladium alkyl complexes[J]. Journal of the American Chemical Society, 2005, 127(6): 1841-1853. doi: 10.1021/ja044122t [28] SONG G Z, PANG W M, LI W M, et al. Phosphine-sulfonate-based nickel catalysts: ethylene polymerization and copolymerization with polar-functionalized norbornenes[J]. Polymer Chemistry, 2017, 8(47): 7400-7405. doi: 10.1039/C7PY01661A [29] HONG C W, SUI X L, LI Z Q, et al. Phosphine phosphonic amide nickel catalyzed ethylene polymerization and copolymerization with polar monomers[J]. DaltonTransactions, 2018, 47(25): 8264-8267. doi: 10.1039/C8DT01018H [30] CHEN Z, LEATHERMAN M D, DAUGULIS O, et al. Nickel-catalyzed copolymerization of ethylene and vinyltrialkoxysilanes: Catalytic production of cross-linkable polyethylene and elucidation of the chain-growth mechanism[J]. Journal of the American Chemical Society, 2017, 139(44): 16013-16022. doi: 10.1021/jacs.7b10281 [31] 刘国敏, 孙悦, 王筱玲, 等. 水杨醛亚胺类镍系配合物的合成及其催化乙烯聚合[J]. 华东理工大学学报(自然科学版), 2011, 37: 293-298. [32] LU J, ZHANG D, CHEN Q, et al. Polymerization of methyl methacrylate catalyzed by mono-/bis-salicylaldiminato nickel(II) complexes and methylaluminoxane[J]. Frontiers of Chemical Science and Engineering, 2011, 5(1): 19-25. doi: 10.1007/s11705-010-0546-1 [33] 居卫, 于栋萍, 徐晨斐, 等. 双(水杨醛亚胺)镍配合物催化乙烯-甲基丙烯酸甲酯共聚[J]. 华东理工大学学报(自然科学版), 2018, 44(3): 340-347. doi: 10.14135/j.cnki.1006-3080.20170331002 [34] 张丹枫, 喻国聪. 乙烯一甲基丙烯酸甲酯共聚物结构的1H-NMR和13C-NMR表征[J]. 分析测试学报, 2018, 37(6): 734-738. doi: 10.3969/j.issn.1004-4957.2018.06.016 [35] ZHANG D F, NADRES E T, BROOKHART M, et al. Synthesis of highly branched polyethylene using "sandwich" (8-p-Tolyl naphthyl alpha-diimine)nickel(II) catalysts[J]. Organometallics, 2013, 32(18): 5136-5143. doi: 10.1021/om400704h [36] 张丹枫, 樊帅, 伏艳, 等. 支化聚乙烯的合成及结构与性能[J]. 高等学校化学学报, 2013, 34(8): 2005-2010. doi: 10.7503/cjcu20121085 [37] 张丹枫, 李森, 于文, 等. α-二亚胺镍(II)催化甲基丙烯酸甲酯聚合[J]. 高等学校化学学报, 2014, 35(7): 1559-1564. doi: 10.7503/cjcu20140298 [38] WEI W P, WANG X L, ZHANG D F, et al. Novel neutral phenylnickel phosphine compounds bearing iminoaryl-substituted cyclopentadienyl ligand: Synthesis, characterization and their styrene polymerization behaviors[J]. Inorganic Chemistry Communications, 2008, 11(5): 487-491. doi: 10.1016/j.inoche.2008.01.006 [39] ZHANG D F, MENG J G, TIAN S M. Nickel cyclopentadienyl complexes as catalysts for ethylene polymerization[J]. Journal of Organometallic Chemistry, 2015, 798: 341-346. doi: 10.1016/j.jorganchem.2015.05.016 [40] 张丹枫, 赵毛雨, 郭宁, 等. “一锅法”N-(2-苯甲酰胺苯基)-水杨醛亚胺/TiCl4·2THF催化乙烯聚合[J]. 高等学校化学学报, 2019, 40(9): 2012-2019. doi: 10.7503/cjcu20190175 [41] JOHNSON L K, KILLIAN C M, BROOKHART M. New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and a-olefins[J]. Journal of the American Chemical Society, 1995, 117(23): 6414-6415. doi: 10.1021/ja00128a054 [42] CELINA M, GEORGE G A. Characterisation and degradation studies of peroxide and silane crosslinked polyethylene[J]. Polymer Degradation and Stability, 1995, 48: 297-312. doi: 10.1016/0141-3910(95)00053-O -