高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

α-二亚胺镍(Ⅱ)催化乙烯与乙烯基三甲氧基硅烷共聚

张丹枫 张文杰 牛犇 仝鑫

张丹枫, 张文杰, 牛犇, 仝鑫. α-二亚胺镍(Ⅱ)催化乙烯与乙烯基三甲氧基硅烷共聚[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220531001
引用本文: 张丹枫, 张文杰, 牛犇, 仝鑫. α-二亚胺镍(Ⅱ)催化乙烯与乙烯基三甲氧基硅烷共聚[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220531001
ZHANG Danfeng, ZHANG Wenjie, NIU Ben, TONG Xin. Copolymerization of Ethylene and Vinyl Trimethoxysilane with α-diimine Nickel (II) Catalysts[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220531001
Citation: ZHANG Danfeng, ZHANG Wenjie, NIU Ben, TONG Xin. Copolymerization of Ethylene and Vinyl Trimethoxysilane with α-diimine Nickel (II) Catalysts[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220531001

α-二亚胺镍(Ⅱ)催化乙烯与乙烯基三甲氧基硅烷共聚

doi: 10.14135/j.cnki.1006-3080.20220531001
基金项目: 上海市重点学科和重点实验室项目(08DZ2230500)
详细信息
    作者简介:

    张丹枫(1965—),女,江苏宜兴人,副教授,博士,从事烯烃配位聚合研究。zdf93102@ecust.edu.cn

  • 中图分类号: O631;O614.81

Copolymerization of Ethylene and Vinyl Trimethoxysilane with α-diimine Nickel (II) Catalysts

  • 摘要: 采用一系列不同结构的α-二亚胺镍(Ⅱ)催化剂,在倍半乙基氯化铝(EASC)作用下,催化乙烯和乙烯基三甲氧基硅烷(VTMoS)共聚。研究了催化剂结构、VTMoS浓度、催化剂用量、Al/Ni摩尔比、乙烯压力、聚合时间和溶剂等对共聚的影响,得到了最优化的催化工艺条件。采用高温核磁(NMR)、傅利叶红外光谱(FTIR)和差示扫描量热分析(DSC)表征了共聚物的微观结构和熔点,等离子体发射光谱测定了共聚物中的硅含量,平衡溶胀法分析了共聚物的交联程度以及共聚物交联网络的均匀性。研究结果表明,以 C4 为催化剂,乙烯压力为2~3 MPa,催化活性高达106 g/(molNi·h),共聚物中硅含量在0.8%~2.1%。

     

  • 1.  α-diimine nickel(II) complexes (C1-C5)

    图  1  乙烯/VTMoS共聚物的1H NMR谱图(表2中Entry 4)

    Figure  1.  1H NMR of ethylene/VTMoS copolymer (entry 4 in Table 2)

    图  2  乙烯/VTMoS共聚物的13C NMR谱图(表2中Entry 4)

    Figure  2.  13C-NMR of ethylene/VTMoS copolymer (entry 4 in Table 2)

    图  3  乙烯/VTMoS共聚物的红外谱图(表2中Entry 5)

    Figure  3.  FTIR spectrum of ethylene/VTMoS copolymer (entry 5 in Table 2)

    图  4  乙烯/VTMoS共聚物的DSC图(表2中Entry 3~5)

    Figure  4.  DSC curve of ethylene/VTMoS copolymers (entry 3~5 in Table 2)

    表  1  反应条件对催化剂C4催化乙烯/VTMoS共聚合的影响

    Table  1.   Influence of reaction parameters on copolymerization of ethylene/VTMoS by catalyst C4

    Entry[Si]/
    (mol/L)
    [Cat]/
    μmol
    nAl/nNiPC2H2
    /MPa
    t/
    h
    Activity/
    (105g/mol Ni·h)
    f a% gel aMc a
    g/mol
    105400117.89---
    20.505400116.5311.3996.952902.25
    31.005400113.2410.2665.482382.63
    41.505400110.02---
    50.502.5400112.129.4998.682048.10
    60.5010400113.267.0196.341126.44
    70.505200114.336.9098.921092.69
    80.505800116.5110.1589.932332.06
    90.5051000119.016.4889.47961.30
    100.5054000.511.195.1395.91589.23
    110.5054002110.4112.3791.463394.02
    120.5054003110.0022.1890.069858.99
    130.50540010.57.506.9097.331093.48
    140.505400123.187.1480.921169.58
    150.505400142.048.3481.751593.30
    160.50540011trance---
    170.5054001111.6323.3884.6610829.44
    Co-catalyst: AlEt2Cl; Entries 1-15, solvent: toluene, entry 16, solvent: hexane; entry 17, solvent: dichloromethane. Temperature: 25°C; V (toluene)=50 mL; a. f, % gel and Mc were determined by solvent swelling and extraction of the sample under refluxing p-xylene (139 °C).
    下载: 导出CSV

    表  2  催化剂结构对乙烯/VTMoS共聚的影响

    Table  2.   Influence of catalyst structures on ethylene/VTMoS copolymerization

    EntryCatalyst
    structure
    Activity/
    (105g·mol−1Ni·h−1)
    f agel a/%Mc a/(g·mol−1)Sib/%
    1C10.14----
    2C20.7213.8570.764188.201.7
    3C30.706.9047.971091.621.2
    4C46.5311.3996.952902.252.1
    5C50.849.9473.422240.580.82
    Catalyst dosage: 5 μmol; [VTMoS] = 0.50 mol/L; nAl/nNi = 400, Ethylene pressure: 1 MPa; Temperature: 25 °C; Time: 1 h; V (total) = 50 mL; Solvent: toluene; a. f, % gel and Mc were determined by solvent swelling and extraction of the sample under refluxing p-xylene (139 °C). b. Si % was determined by inductively coupled plasma (ICP).
    下载: 导出CSV
  • [1] 王佳, 高榕, 刘东兵. 乙烯与极性单体共聚合的最新研究进展[J]. 化学工程与装备, 2019(8): 251-253. doi: 10.19566/j.cnki.cn35-1285/tq.2019.08.104
    [2] FU X, ZHANG L J, TANAKA R, et al. Highly robust nickel catalysts containing anilinonaphthoquinone ligand for copolymerization of ethylene and polar monomers[J]. Macromolecules, 2017, 50(23): 9216-9221. doi: 10.1021/acs.macromol.7b01947
    [3] ZHANG Y P, MU H L, PAN L, et al. Robust bulky [P, O] neutral nickel catalysts for copolymerization of ethylene with polar vinyl monomers[J]. ACS Catalysis, 2018, 8(7): 5963-5976. doi: 10.1021/acscatal.8b01088
    [4] 李永清, 王凡, 曹育才. 后过渡金属配合物催化烯烃-极性单体共聚[J]. 有机化学, 2021, 41(4): 1396-1433.
    [5] ZHANG X F, CHEN S T, LI H Y, et al. Copolymerizations of ethylene and polar comonomers with bis(phenoxyketimine) group IV complexes: Effects of the central metal properties[J]. Journal of Polymer Science: Part A. Polymer Chemistry, 2007, 45(1): 59-68. doi: 10.1002/pola.21804
    [6] 杨木泉, 毛骏, 董志鑫, 等. 两亲性PS-b-PEG嵌段共聚物刷的合成及响应行为[J]. 高等学校化学学报, 2012, 33(12): 2816-2821. doi: 10.7503/cjcu20120114
    [7] HAGIHARA H, ISHIHARA T, THE BAN H, et al. Precise control of microstructure of functionalized polypropylene synthesized by the ansa-zirconocene/MAO catalysts[J]. Journal of Polymer Science:Part A:Polymer Chemistry, 2008, 46(5): 1738-1748. doi: 10.1002/pola.22516
    [8] MU J S, YANG F, LIU Z S, et al. Polyethylene-block-poly(ε-caprolactone) diblock copolymers: Synthesis and compatibility[J]. Polymer International, 2014, 63(12): 2017-2022. doi: 10.1002/pi.4754
    [9] 张丹枫, 张玉军, 喻国聪, 等. 水杨醛亚胺镍配合物催化乙烯与甲基丙烯酸甲酯的共聚反应[J]. 高等学校化学学报, 2017, 38(11): 2082-2088. doi: 10.7503/cjcu20170256
    [10] LEBLANC A, GRAU E, BROYER J P, et al. Homo- and copolymerizations of (meth)Acrylates with olefins (styrene, ethylene) using neutral nickel complexes: A dual radical/catalytic pathway[J]. Macromolecules, 2011, 44(9): 3293-3301. doi: 10.1021/ma200158n
    [11] TAHMOURESILERD B, XIAO D, DO L H. Rigidifying cation-tunable nickel catalysts increases activity and polar monomer incorporation in ethylene and methyl acrylate copolymerization[J]. Inorganic Chemistry, 2021, 60(24): 19035-19043. doi: 10.1021/acs.inorgchem.1c02888
    [12] WU F, FOLEY S R, BURNS C T, et al. Acrylonitrile insertion reactions of cationic palladium alkyl complexes[J]. Journal of the American Chemical Society, 2005, 127(6): 1841-1853. doi: 10.1021/ja044122t
    [13] LEICHT H, GÖTTKER-SCHNETMANN I, MECKING S. Incorporation of vinyl chloride in insertion polymerization[J]. Angewandte Chemie International Edition, 2013, 52(14): 3963-3966. doi: 10.1002/anie.201209724
    [14] XIA J, ZHANG Y, ZHANG J, et al. High-performance neutral phosphine-sulfonate nickel(II) catalysts for efficient ethylene polymerization and copolymerization with polar monomers[J]. Organometallics, 2019, 38(5): 1118-1126. doi: 10.1021/acs.organomet.8b00916
    [15] 高自宏, 范星河, 陈小芳, 等. 新型含硅聚芳醚酮的合成与表征[J]. 高等学校化学学报, 2005, 26(08): 1579-1581. doi: 10.3321/j.issn:0251-0790.2005.08.041
    [16] AMIN S B, MARKS T J. Alkenylsilane structure effects on mononuclear and binuclear organotitanium-mediated ethylene polymerization: scope and mechanism of simultaneous polyolefin branch and functional group introduction[J]. Journal of the American Chemical Society, 2007, 129(10): 2938-2953. doi: 10.1021/ja0675292
    [17] LIU J Y, NOMURA K. Efficient functional group introduction into polyolefins by copolymerization of ethylene with allyltrialkylsilane using nonbridged half-titanocenes[J]. Macromolecules, 2008, 41(4): 1070-1072. doi: 10.1021/ma800031h
    [18] LIPPONEN S H, SEPPÄLÄ J V. Ethylenebis(indenyl)zirconium dichloride/methylaluminoxane-catalyzed copolymerization of ethylene and 1-alkene-n-trimethylsilanes[J]. Organometallics, 2011, 30(3): 528-533. doi: 10.1021/om100900f
    [19] PETZETAKIS N, STONE G M, BALSARA N P. Synthesis of well-defined polyethylene-polydimethylsiloxane-polyethylene triblock copolymers by diimide-based hydrogenation of polybutadiene blocks[J]. Macromolecules, 2014, 47(13): 4151-4159. doi: 10.1021/ma500686k
    [20] 刘仪, 许晓洲, 莫松, 等. 含硅氧烷结构聚酰亚胺树脂的耐热稳定性及高温结构演变[J]. 高等学校化学学报, 2019, 40(1): 187-194. doi: 10.7503/cjcu20180342
    [21] 张勇杰, 樊明帅, 李晓佩, 等. 含硅功能化聚烯烃: 合成及应用[J]. 化学进展, 2020, 32(1): 84-92.
    [22] CIOLINO A E, GALLAND G B, FERREIRA M L, et al. Novel synthesis of polyethylene–poly(dimethylsiloxane) copolymers with a metallocene catalyst[J]. Journal of Polymer Science:Part A:Polymer Chemistry, 2004, 42(10): 2462-2473. doi: 10.1002/pola.20066
    [23] CIOLINO A, SAKELLARIOU G, PANTAZIS D, et al. Synthesis and characterization of model diblock copolymers of poly(dimethylsiloxane) with poly(1, 4-butadiene) or poly(ethylene)[J]. Journal of Polymer Science:Part A:Polymer Chemistry, 2006, 44(5): 1579-1590. doi: 10.1002/pola.21252
    [24] ZIMMER S, SCHOBEL A, HALBACH T, et al. New curable propylene copolymers containing tert-butoxysilane side groups[J]. Macromolecular Rapid Communications, 2013, 34(3): 221-226. doi: 10.1002/marc.201200537
    [25] XU Z X, JIE S Y, LI B G. Well-defined pe-b-pdms diblock copolymers via the combination of thiolene click and esterification reactions: Facile synthesis and compatibilization for hdpe/silicone oil blends[J]. Journal of Polymer Science:Part A:Polymer Chemistry, 2014, 52(22): 3205-3212. doi: 10.1002/pola.27381
    [26] JOHNSON L K, MECKING S, BROOKHART M, Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts[J]. Journal of the American Chemical Society, 1996, 118(1): 267-268.
    [27] WU F, FOLEY S R, BURNS C T, et al. Acrylonitrile insertion reactions of cationic palladium alkyl complexes[J]. Journal of the American Chemical Society, 2005, 127(6): 1841-1853. doi: 10.1021/ja044122t
    [28] SONG G Z, PANG W M, LI W M, et al. Phosphine-sulfonate-based nickel catalysts: ethylene polymerization and copolymerization with polar-functionalized norbornenes[J]. Polymer Chemistry, 2017, 8(47): 7400-7405. doi: 10.1039/C7PY01661A
    [29] HONG C W, SUI X L, LI Z Q, et al. Phosphine phosphonic amide nickel catalyzed ethylene polymerization and copolymerization with polar monomers[J]. DaltonTransactions, 2018, 47(25): 8264-8267. doi: 10.1039/C8DT01018H
    [30] CHEN Z, LEATHERMAN M D, DAUGULIS O, et al. Nickel-catalyzed copolymerization of ethylene and vinyltrialkoxysilanes: Catalytic production of cross-linkable polyethylene and elucidation of the chain-growth mechanism[J]. Journal of the American Chemical Society, 2017, 139(44): 16013-16022. doi: 10.1021/jacs.7b10281
    [31] 刘国敏, 孙悦, 王筱玲, 等. 水杨醛亚胺类镍系配合物的合成及其催化乙烯聚合[J]. 华东理工大学学报(自然科学版), 2011, 37: 293-298.
    [32] LU J, ZHANG D, CHEN Q, et al. Polymerization of methyl methacrylate catalyzed by mono-/bis-salicylaldiminato nickel(II) complexes and methylaluminoxane[J]. Frontiers of Chemical Science and Engineering, 2011, 5(1): 19-25. doi: 10.1007/s11705-010-0546-1
    [33] 居卫, 于栋萍, 徐晨斐, 等. 双(水杨醛亚胺)镍配合物催化乙烯-甲基丙烯酸甲酯共聚[J]. 华东理工大学学报(自然科学版), 2018, 44(3): 340-347. doi: 10.14135/j.cnki.1006-3080.20170331002
    [34] 张丹枫, 喻国聪. 乙烯一甲基丙烯酸甲酯共聚物结构的1H-NMR和13C-NMR表征[J]. 分析测试学报, 2018, 37(6): 734-738. doi: 10.3969/j.issn.1004-4957.2018.06.016
    [35] ZHANG D F, NADRES E T, BROOKHART M, et al. Synthesis of highly branched polyethylene using "sandwich" (8-p-Tolyl naphthyl alpha-diimine)nickel(II) catalysts[J]. Organometallics, 2013, 32(18): 5136-5143. doi: 10.1021/om400704h
    [36] 张丹枫, 樊帅, 伏艳, 等. 支化聚乙烯的合成及结构与性能[J]. 高等学校化学学报, 2013, 34(8): 2005-2010. doi: 10.7503/cjcu20121085
    [37] 张丹枫, 李森, 于文, 等. α-二亚胺镍(II)催化甲基丙烯酸甲酯聚合[J]. 高等学校化学学报, 2014, 35(7): 1559-1564. doi: 10.7503/cjcu20140298
    [38] WEI W P, WANG X L, ZHANG D F, et al. Novel neutral phenylnickel phosphine compounds bearing iminoaryl-substituted cyclopentadienyl ligand: Synthesis, characterization and their styrene polymerization behaviors[J]. Inorganic Chemistry Communications, 2008, 11(5): 487-491. doi: 10.1016/j.inoche.2008.01.006
    [39] ZHANG D F, MENG J G, TIAN S M. Nickel cyclopentadienyl complexes as catalysts for ethylene polymerization[J]. Journal of Organometallic Chemistry, 2015, 798: 341-346. doi: 10.1016/j.jorganchem.2015.05.016
    [40] 张丹枫, 赵毛雨, 郭宁, 等. “一锅法”N-(2-苯甲酰胺苯基)-水杨醛亚胺/TiCl4·2THF催化乙烯聚合[J]. 高等学校化学学报, 2019, 40(9): 2012-2019. doi: 10.7503/cjcu20190175
    [41] JOHNSON L K, KILLIAN C M, BROOKHART M. New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and a-olefins[J]. Journal of the American Chemical Society, 1995, 117(23): 6414-6415. doi: 10.1021/ja00128a054
    [42] CELINA M, GEORGE G A. Characterisation and degradation studies of peroxide and silane crosslinked polyethylene[J]. Polymer Degradation and Stability, 1995, 48: 297-312. doi: 10.1016/0141-3910(95)00053-O
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  42
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-31
  • 网络出版日期:  2022-09-14

目录

    /

    返回文章
    返回