Effect of Different Carbon Sources on Microbial Denitrification Performance
-
摘要: 采用序批式反应器,研究了甲醇、乙酸钠、乙二醇、丙三醇和葡萄糖五种碳源对不同电子受体反硝化性能的影响。结果表明以NO3−−N及NO2−−N为电子受体时,甲醇、乙酸钠、乙二醇、丙三醇、葡萄糖的最佳碳氮比分别为5、5、7、7、8与3、3、3.5、4、4,比反硝化速率从快到慢依次是乙酸钠、甲醇、乙二醇、丙三醇、葡萄糖与甲醇、乙酸钠、乙二醇、葡萄糖、丙三醇。经成本计算可得,处理相同浓度的NO3−−N和NO2−−N,需要投加的碳源成本从低到高依次为甲醇、葡萄糖、乙酸钠、乙二醇、丙三醇和甲醇、葡萄糖、乙二醇、乙酸钠、丙三醇。本文为低碳氮比废水处理过程提供碳源优选参考。Abstract: In this study, five carbon sources, including methanol, sodium acetate, glycol, glycerol, and glucose were used to investigate the denitrification performance of different electron acceptors in sequencing batch reactors (SBRs). The results showed that the removal ratios and specific denitrification rates of different carbon sources all showed upward trends with the increased C/N ratios. The optimal carbon to nitrogen ratio (C/N) of five carbon resources for NO3−−N and NO2−−N were 5, 5, 7, 7, and 8, and 3, 3, 3.5, 4, and 4, respectively. Under the optimal C/N ratio, the specific denitrification rates decreased with the sequence of sodium acetate, methanol, glycol, glycerol and glucose for NO3−−N electron acceptor, and methanol, sodium acetate, glycol, glucose and glycerol for NO2−−N electron acceptor. After calculation, the cost for treating the same concentrations of NO3−−N increased with the sequence of methanol, glucose, sodium acetate, glycol, and glycerol; while the cost for treating the same concentrations of NO2−−N increased with the sequence of methanol, glucose, glycol, sodium acetate, and glycerol. Compared to NO3−−N, NO2−−N saved 40%-50% carbon sources cost at the same concentration. Glucose was recommended as the external carbon source with low ammonia nitrogen loading rates, and sodium acetate was recommended with high ammonia nitrogen loading rates, while glycol could be served as the substitute for sodium acetate.
-
Key words:
- denitrification /
- carbon source /
- carbon to nitrogen ratio /
- specific denitrification rate /
- NO3−−N /
- NO2−−N
-
表 1 反应器运行各阶段电子受体及C/N
Table 1. Electron acceptors and C/N ratios at each stage of operation in five reactors
Phase
(d)Electron acceptors C/N Methanol Sodium
acetateGlycol Glycerol Glucose Ⅰ(0−13) NO3−−N 3 3 3 3 3 Ⅱ(14−18) 4 4 4 4 4 Ⅲ(19−23) 5 5 5 5 5 Ⅳ(24−27) 6 6 6 6 6 Ⅴ(28−32) 7 7 7 7 7 Ⅵ(33−38) 7 7 7 7 8 Ⅶ(40−47) NO2−−N 2 2 2 2 2 Ⅷ(48−53) 2.5 2.5 2.5 2.5 2.5 Ⅸ(54−58) 3 3 3 3 3 Ⅹ(59−63) 3.5 3.5 3.5 3.5 3.5 Ⅺ(64−68) / / / 4 4 表 2 不同碳源条件下反硝化理论碳氮比
Table 2. Theoretical C/N ratio of denitrification under different carbon sources
Carbon source Chemical reaction equation of denitrification Molar ratio
(carbon/nitrogen)Theoretical COD of
carbon sourceTheoretical C/N ratio Methanol ${\rm{5C{H_3}OH + 6NO_3^ - + 6{H^ + } \to 3{N_2} + 5C{O_2} + 13{H_2}O}}$ 0.84 48 2.86 Sodium acetate ${\rm{ 5C{H_3}COOH + 8NO_3^ - + 8{H^ + } \to 4{N_2} + 10C{O_2} + 14{H_2}O}}$ 0.63 64 2.86 Glycol ${\rm{{ {C} _2}{H_6}{O_2} + 2NO_3^ - + 2{H^ + } \to {N_2} + 2C{O_2} + 4{H_2}O}}$ 0.50 80 2.86 Glycerol ${\rm{5{C_3}{H_8}{O_3} + 14NO_3^ - + 14{H^ + } \to 7{N_2} + 15C{O_2} + 27{H_2}O}}$ 0.36 112 2.86 Glucose ${\rm{5{C_6}{H_{12} }{O_6} + 24NO_3^ - + 24{H^ + } \to 12{N_2} + 30C{O_2} + 42{H_2}O}}$ 0.21 192 2.86 Methanol ${\rm{{ {CH} _3}OH + 2NO_2^ - + 2{H^ + } \to {N_2} + C{O_2} + 3{H_2}O }}$ 0.50 48 1.71 Sodium acetate ${\rm{3C{H_3}COOH + 8NO_2^ - + 8{H^ + } \to 4{N_2} + 6C{O_2} + 10{H_2}O}}$ 0.38 64 1.71 Glycol ${\rm{3{C_2}{H_6}{O_2} + 10NO_2^ - + 10{H^ + } \to 5{N_2} + 6C{O_2} + 14{H_2}O}}$ 0.30 80 1.71 Glycerol ${\rm{3{C_3}{H_8}{O_3} + 14NO_2^ - + 14{H^ + } \to 7{N_2} + 9C{O_2} + 19{H_2}O}}$ 0.21 112 1.71 Glucose ${\rm{{ {C} _6}{H_{12} }{O_6} + 8NO_2^ - + 8{H^ + } \to 4{N_2} + 6C{O_2} + 10{H_2}O}}$ 0.16 192 1.71 Note: Molar ratio represents the moles of carbon source for conversion of 1 mole NOX−−N in denitrification process. Theoretical COD of carbon source represents theoretical COD of 1 mole carbon source 表 3 不同碳源投加量下各SBR反应器内比反硝化速率
Table 3. Specific denitrification rates (SDNR) obtained with 5 different carbon sources
Methanol Sodium acetate Glycol Glycerol Glucose SDNR (mg/(g·h)) NO3−−N C/N=3 5.4 (9.1) 3.6 (7.4) 2.9 (7.3) 1.8 (4.4) 1.5 (3.9) C/N=4 5.5 (11.2) 4.2 (9) 3.5 (7.7) 2.1 (4.1) 1.6 (4.9) C/N=5 6.2 (11.8) 7.7 (9.8) 4.2 (8.5) 2.5 (5.4) 2.0 (5.3) C/N=6 6.6 (12.8) 7.7 (10.7) 4.4 (9) 2.9 (7.4) 2.4 (5.4) C/N=7 6.7 (15.3) 8.2 (11.3) 4.4 (9.2) 4.0 (8.4) 2.8 (6.7) C/N=8 / / / / 3.7 (6.7) NO2−−N C/N=2 4.5 (6.7) 3.2 (5.5) 2.6 (4.2) 2.0 (3.8) 2.3 (3.9) C/N=2.5 5.7 (8.3) 3.9 (6.2) 3.2 (5) 2.9 (5.6) 2.8 (4.4) C/N=3 6.2 (8.7) 5.4 (7.3) 4.2 (5.9) 3.0 (5.8) 3.3 (5.6) C/N=3.5 6.3 (10.5) 7.1 (8.4) 5.1 (6.5) 3.6 (7.1) 3.8 (6.1) C/N=4 / / / 3.7 (7.1) 3.9 (6.1) Note: The datas in bracket are the maximum specific denitrification rates 表 4 不同碳源在最佳碳氮比下的成本分析表
Table 4. Cost of carbon sources at corresponding optimal C/N ratio for nitrogen removal
Electron acceptor Optimal C/N ratio Mass ratio of carbon source to TN Price converted to100%
purity (yuan/ton)TN (mg/L) Carbon source (mg/L) Cost of carbon source (yuan/m3 water) Methanol NO3−−N 5.0 3.3 2995 50 165 0.50 NO2−−N 3.0 2.0 50 100 0.30 Sodium acetate NO3−−N 5.0 6.4 5200 50 320 1.66 NO2−−N 3.0 3.8 50 190 0.98 Glycol NO3−−N 7.0 5.5 6100 50 275 1.68 NO2−−N 3.5 2.7 50 135 0.82 Glycerol NO3−−N 7.0 5.7 13350 50 285 3.80 NO2−−N 4.0 3.3 50 165 2.20 Glucose NO3−−N 8.0 7.6 3690 50 380 1.40 NO2−−N 4.0 3.8 50 190 0.70 Note: The prices of chemicals were used according to www.1688.com (November 2021). -
[1] 中华人民共和国生态环境部. 2020年中国生态环境统计年报[R]. 北京: 中国环境科学出版社, 2022. [2] YU Q B, WANG F, LI X Y, et al. Tracking nitrate sources in the Chaohu Lake, China, using the nitrogen and oxygen isotopic approach[J]. Environmental Science and Pollution Research, 2018, 25(20): 19518-19529. doi: 10.1007/s11356-018-2178-9 [3] XU Z S, DAI X H, CHAI X L. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes[J]. Science of the Total Environment, 2018, 634: 195-204. doi: 10.1016/j.scitotenv.2018.03.348 [4] 熊子康, 郑怀礼, 尚娟芳, 等. 污水反硝化脱氮工艺中外加碳源研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(2): 168-181. doi: 10.11835/j.issn.2096-6717.2020.167 [5] 张雷, 钱大益, 陈凯华, 等. 微氧条件下煤气化废水脱氮途径及机理[J]. 化工进展, 2011, 30(S1): 740-744. [6] TENG C Y, ZHOU K G, PENG C H, et al. Characterization and treatment of landfill leachate: A review[J]. Water Research, 2021, 203: 117525. doi: 10.1016/j.watres.2021.117525 [7] GU X, LENG J T, ZHU J T, et al. Influence mechanism of C/N ratio on heterotrophic nitrification- aerobic denitrification process[J]. Bioresource Technology, 2022, 343: 126116. doi: 10.1016/j.biortech.2021.126116 [8] PELAZ L, GOMEZ A, LETONA A, et al. Nitrogen removal in domestic wastewater. Effect of nitrate recycling and COD/N ratio[J]. Chemosphere, 2018, 212: 8-14. doi: 10.1016/j.chemosphere.2018.08.052 [9] 郑晓英, 乔露露, 王慰, 等. 碳源对反硝化生物滤池运行及微生物种群的影响[J]. 环境工程学报, 2018, 12(5): 1434-1442. doi: 10.12030/j.cjee.201710046 [10] RIBERA-GUARDIA A, KASSOTAKI E, GUTIERREZ O, et al. Effect of carbon source and competition for electrons on nitrous oxide reduction in a mixed denitrifying microbial community[J]. Process Biochemistry, 2014, 49(12): 2228-2234. doi: 10.1016/j.procbio.2014.09.020 [11] CHEN J Z, LEE Y, OLESZKIEWICZ J A. Applicability of industrial wastewater as carbon source for denitrification of a sludge dewatering liquor[J]. Environmental Technology, 2013, 34(5-8): 731-736. doi: 10.1080/09593330.2012.715755 [12] CYPLIK P, JUZWA W, MARECIK R, et al. Denitrification of industrial wastewater: Influence of glycerol addition on metabolic activity and community shifts in a microbial consortium[J]. Chemosphere, 2013, 93(11): 2823-2831. doi: 10.1016/j.chemosphere.2013.09.083 [13] WANG J L, CHU L B. Biological nitrate removal from water and wastewater by solid-phase denitrification process[J]. Biotechnology Advances, 2016, 34(6): 1103-1112. doi: 10.1016/j.biotechadv.2016.07.001 [14] ZHAO W, WANG Y Y, LIU S H, et al. Denitrification activities and N2O production under salt stress with varying COD/N ratios and terminal electron acceptors[J]. Chemical Engineering Journal, 2013, 215-216: 252-260. doi: 10.1016/j.cej.2012.10.084 [15] 付昆明, 张晓航, 刘凡奇, 等. 葡萄糖碳源条件下C/N对反硝化和N2O释放性能的影响[J]. 环境工程学报, 2021, 15(4): 1279-1288. doi: 10.12030/j.cjee.202010137 [16] 张自杰. 排水工程(下)[M]. 北京: 中国建筑工业出版社, 2015. [17] 王思宇, 李军, 王秀杰, 等. 添加芽孢杆菌污泥反硝化特性及菌群结构分析[J]. 中国环境科学, 2017, 37(12): 4649-4656. doi: 10.3969/j.issn.1000-6923.2017.12.030 [18] 胡贝贝. 硝态氮浓度对生物接触氧化法脱氮性能的影响研究[D]. 河南: 郑州大学, 2021. [19] 彭永臻, 王鸣岐, 彭轶, 等. 四种碳源条件下城市污水处理厂尾水深度脱氮的性能与微生物种群结构[J]. 北京工业大学学报, 2021, 47(10): 1158-1165. doi: 10.11936/bjutxb2020010016 [20] 张攀, 李智勤, 李领明, 等. SBR法短程硝化反硝化处理生活垃圾机械脱除水[J]. 中国给水排水, 2018, 34(1): 68-73. doi: 10.19853/j.zgjsps.1000-4602.2018.01.015 [21] 吴代顺, 桂丽娟, 陈晓志, 等. 不同类型碳源及其投加量对污泥反硝化的影响研究[J]. 兰州交通大学学报, 2012, 31(3): 99-103. doi: 10.3969/j.issn.1001-4373.2012.03.024 [22] 彭永臻, 宋燕杰, 刘牡, 等. 晚期渗滤液短程生物脱氮的实现[J]. 土木建筑与环境工程, 2012, 34(6): 126-132. doi: 10.3969/j.issn.1674-4764.2012.06.021 [23] 张仲玲. 反硝化脱氮外加碳源的选择 [D] 黑龙江: 哈尔滨工业大学, 2009. [24] ELEFSINIOTIS P, WAREHAM D G, SMITH M O. Use of volatile fatty acids from an acid-phase digester for denitrification[J]. Journal of Biotechnology, 2004, 114(3): 289-297. doi: 10.1016/j.jbiotec.2004.02.016 [25] 殷芳芳, 王淑莹, 昂雪野, 等. 碳源类型对低温条件下生物反硝化的影响[J]. 环境科学, 2009, 30(1): 108-113. doi: 10.13227/j.hjkx.2009.01.045 [26] 王淑莹, 殷芳芳, 侯红勋, 等. 以甲醇作为外碳源的生物反硝化[J]. 北京工业大学学报, 2009, 35(11): 1521-1526. doi: 10.11936/bjutxb2009111521 [27] FERNANDEZ-NAVA Y, MARANON E, SOONS J, et al. Denitrification of high nitrate concentration wastewater using alternative carbon sources[J]. Journal of Hazardous Materials, 2010, 173(1-3): 682-688. doi: 10.1016/j.jhazmat.2009.08.140 [28] 北京水环境技术与设备研究中心, 北京市环境保护科学研究院, 国家城市环境污染控制工程技术研究中心. 三废处理工程技术手册(废水卷)[M]. 北京: 化学工业出版社. 2000. -