高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

蔗糖和咖啡因的持续摄入对不同饮食小鼠生理代谢的影响

蒋如梦 黄佳薇 王永红

蒋如梦, 黄佳薇, 王永红. 蔗糖和咖啡因的持续摄入对不同饮食小鼠生理代谢的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220518001
引用本文: 蒋如梦, 黄佳薇, 王永红. 蔗糖和咖啡因的持续摄入对不同饮食小鼠生理代谢的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220518001
JIANG Rumeng, HUANG Jiawei, WANG Yonghong. Studies on the Effects of the Sustainable Intake of Sucrose and Caffeine on the Physiological Metabolism of Mice Fed with Different Diets[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220518001
Citation: JIANG Rumeng, HUANG Jiawei, WANG Yonghong. Studies on the Effects of the Sustainable Intake of Sucrose and Caffeine on the Physiological Metabolism of Mice Fed with Different Diets[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220518001

蔗糖和咖啡因的持续摄入对不同饮食小鼠生理代谢的影响

doi: 10.14135/j.cnki.1006-3080.20220518001
详细信息
    作者简介:

    蒋如梦 (1996-) ,女,江苏人,硕士生,研究方向:生物与医药,E-mail:rumeng_jiang@163.com

    通讯作者:

    王永红,E-mail:yhwang@ecust.edu.cn

  • 中图分类号: TS202

Studies on the Effects of the Sustainable Intake of Sucrose and Caffeine on the Physiological Metabolism of Mice Fed with Different Diets

  • 摘要: 通过对市面上的奶茶产品进行调研和测定,结合人们日常消费习惯,以奶茶中总糖和咖啡因浓度的中位数为标准灌胃小鼠。在常规饲料和高糖高脂饲料喂养的基础上,使用C57 BL/6J雄性小鼠模拟人每天喝1杯奶茶摄入的蔗糖和咖啡因量,以体重、血糖、血脂、炎症因子和组织学检查作为评价指标,研究蔗糖和咖啡因的持续摄入对小鼠生理代谢的影响。实验结果表明:所选取奶茶样品中总糖含量范围为25 ~135 g/L,咖啡因含量范围为190 ~853 mg/L;与常规饲料组相比,常规饲料加蔗糖和咖啡因组空腹血糖值由4.27±0.06 mmol/L上升至5.43±0.39 mmol/L,血清肿瘤坏死因子-α质量浓度由89.48±2.85 ng/L上升至112.94±1.76 ng/L,血清白细胞介素-6质量浓度由49.31±3.23 ng/L上升至65.44±4.70 ng/L,体重增加值由3.33±0.64 g下降至2.45±0.51 g,血清甘油三酯浓度由0.88±0.29 mmol/L下降至0.74±0.04 mmol/L;与高糖高脂饲料组相比,高糖高脂饲料加蔗糖和咖啡因组体重增加值由8.38±1.42 g下降至3.67±1.23 g,血清甘油三酯浓度由0.86±0.07 mmol/L下降至0.71±0.06 mmol/L。长期摄入蔗糖和咖啡因混合溶液能使小鼠体重和血清甘油三酯下降,但会使空腹血糖和促炎因子增加。

     

  • 图  1  各组小鼠日总能量摄入

    Figure  1.  Daily total energy intake of mice in each group

    图  2  16周内不同饲喂条件下小鼠体重的变化

    Figure  2.  Changes of body weight in mice under different feeding conditions during 16 weeks

    图  3  16周内不同饲喂条件下小鼠FBG的变化

    Figure  3.  Changes of FBG in mice under different feeding conditions during 16 weeks

    图  4  16周时不同饲喂条件下小鼠口服葡萄糖耐量实验结果

    Figure  4.  The results of OGTT in mice under different feeding conditions at 16 weeks

    图  5  16周后不同饲喂条件下小鼠血清中TC和TG的浓度

    Figure  5.  The concentration of serum TC and TG in mice under different feeding conditions after 16 weeks

    图  6  16周后不同饲喂条件下小鼠血清中TNF-α和IL-6的浓度

    Figure  6.  The concentration of serum TNF-α and IL-6 in mice under different feeding conditions after 16 weeks

    图  7  16周后不同饲喂条件下小鼠组织 (肝脏和附睾丸脂肪、肾周脂肪)重量

    Figure  7.  The weight of tissue (liver, epididymal fat and perirenal fat) in mice under different feeding conditions after 16 weeks

    图  8  各组小鼠肝脏组织HE染色结果 (200×)

    注:图8中1为炎症灶,2为脂肪滴。

    Figure  8.  HE staining of liver tissues of mice in each group (200×)

    图  9  各组小鼠肝脏组织油红O染色结果 (200×)

    Figure  9.  Oil red O staining of liver tissues of mice in each group (200×)

    图  10  各组小鼠附睾丸脂肪组织HE染色结果 (400×)

    Figure  10.  HE staining of epididymal fat tissues of mice in each group (400×)

    表  1  奶茶中的总糖和咖啡因含量

    Table  1.   Sugar and caffeine content in bubble tea

    BrandKindConcentration of caffeine (mg/L)Concentration of sugar (g/L)
    HEYTEASugar-free latte336.30±7.7447.29±0.79
    Light sugar latte447.06±4.5364.72±1.29
    Regular sugar latte475.10±5.6383.41±1.09
    Sugar-free bubble tea245.84±5.6027.96±3.47
    Light sugar bubble tea306.14±7.3391.43±3.02
    Regular bubble tea250.26±6.3284.04±0.59
    LELECHALight sugar latte203.76±1.2941.57±0.74
    Less sugar latte215.40±5.6841.29±0.64
    Regular sugar latte391.50±0.7230.19±2.59
    A Little TeaSugar-free latte250.26±6.3228.00±0.30
    Half sugar latte546.09±6.1672.70±1.78
    Regular sugar latte529.21±15.10100.18±0.25
    Sugar-free bubble tea378.40±4.2869.17±0.25
    Half sugar bubble tea308.71±11.5087.19±0.50
    Regular bubble tea295.64±0.19135.64±7.33
    COCOSugar-free latte269.84±0.6032.48±0.05
    Half sugar latte292.93±1.6959.75±1.19
    Regular sugar latte278.15±5.0177.53±2.38
    Sugar-free bubble tea243.37±4.0060.59±2.08
    Half sugar bubble tea254.73±0.71118.67±4.31
    Regular bubble tea236.78±10.69139.67±5.00
    CUO NEI VillageSugar-free latte622.75±9.1622.51±0.05
    Half sugar latte565.59±9.0770.12±2.16
    Regular sugar latte493.84±7.4077.57±2.23
    Sugar-free bubble tea350.34±3.4369.35±3.25
    Half sugar bubble tea337.53±2.2070.66±3.56
    Regular bubble tea314.92±3.6494.79±2.59
    Xiao chunchaSugar-free latte368.05±1.4320.47±1.49
    Half sugar latte307.01±13.8259.07±1.46
    Regular sugar latte295.98±3.9278.06±0.25
    Sugar-free bubble tea284.08±0.8240.25±0.35
    Half sugar bubble tea227.58±8.4564.79±0.50
    Regular bubble tea194.46±7.5874.84±1.93
    Kwai yuen PoSugar-free Hong Kong-style bubble tea228.55±11.7238.22±2.13
    Half sugar Hong Kong-style bubble tea833.17±9.0546.55±0.64
    Regular Hong Kong-style bubble tea853.27±15.9657.33±0.84
    下载: 导出CSV
  • [1] VOS M B, KAAR J L, WELSH J A, et al. Added sugars and cardiovascular disease risk in children[J]. Circulation, 2017, 135(19): E1017-E1034.
    [2] WONG S H and YU J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications[J]. Nature Reviews Gastroenterology Hepatology, 2019, 16(11): 690-704. doi: 10.1038/s41575-019-0209-8
    [3] SYLVETSKYAB A C, VISEKA A J, HALBERGA S, et al. Beyond taste and easy access: physical, cognitive, interpersonal, and emotional reasons for sugary drink consumption among children and adolescents[J]. Appetite, 2020, 155: 104826. doi: 10.1016/j.appet.2020.104826
    [4] DIRIENZI S C and BRITTON R A. Adaptation of the gut microbiota to modern dietary sugars and sweeteners[J]. Advances in Nutrition, 2020, 11(3): 616-629. doi: 10.1093/advances/nmz118
    [5] MORENGA L. T, MALLARD S and MANN J. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies[J]. British Medical Journal, 2013, 346(7891): 12.
    [6] PIERCE A A, DUWAERTS C C, SOON R K, et al. Isocaloric manipulation of macronutrients within a high-carbohydrate/moderate-fat diet induces unique effects on hepatic lipogenesis, steatosis and liver injury[J]. Journal of Nutritional Biochemistry, 2016, 29: 12-20. doi: 10.1016/j.jnutbio.2015.10.020
    [7] PETERSEN K F and SHULMAN G I. Etiology of insulin resistance[J]. The American Journal of Medicine, 2006, 119(5): S10-S16. doi: 10.1016/j.amjmed.2006.01.009
    [8] MCLELLAN T M, CALDWELL J A. and LIEBERMAN H R. A review of caffeine's effects on cognitive, physical and occupational performance[J]. Neuroscience and Biobehavioral Reviews, 2016, 71: 294-312. doi: 10.1016/j.neubiorev.2016.09.001
    [9] GRANERI L, LAM V, D'ALONZO Z, et al. The consumption of energy drinks induces blood-brain barrier dysfunction in wild-type mice[J]. Frontiers in Nutrition, 2021, 8: 668514. doi: 10.3389/fnut.2021.668514
    [10] KAMIMORI G H, JOHNSON D, THORNE D, et al. Multiple caffeine doses maintain vigilance during early morning operations[J]. Aviation Space and Environmental Medicine, 2005, 76(11): 1046-1050.
    [11] SPAETH A M, GOEL N, and DINGES D F. Cumulative neurobehavioral and physiological effects of chronic caffeine intake: individual differences and implications for the use of caffeinated energy products[J]. Nutrition Reviews, 2014, 72(1): 34-47.
    [12] HECKMAN M A, WEIL J and MEJIA E G. Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters[J]. Journal of Food Science, 2010, 75(3): R77-R87. doi: 10.1111/j.1750-3841.2010.01561.x
    [13] SUNGWOO L, ZOELLNER J M, LEE J M, et al. Obesity and sugar-sweetened beverages in African-American preschool children: a longitudinal study[J]. Obesity, 2009, 17(6): 1262-1268. doi: 10.1038/oby.2008.656
    [14] 国家卫生健康委疾病预防控制局作. 中国居民营养与慢性病状况报告(2020年)[M]. 北京: 人民卫生出版社, 2022: 24-45.
    [15] NAIR A B and JACOB S. A simple practice guide for dose conversion between animals and human[J]. Journal of basic and clinical pharmacy, 2016, 7(2): 27-31. doi: 10.4103/0976-0105.177703
    [16] 杨哲. EGCG与咖啡因协同及绿茶茶饮的降脂减肥作用及机制研究[D]. 长沙: 湖南农业大学, 2019.
    [17] 高伟华. 乳酸菌对高糖高脂2型糖尿病小鼠糖脂代谢及肠道菌群的影响[D]. 临汾: 山西师范大学, 2018.
    [18] HAN Y J, SHIN Y C, KIM A H, et al. Evaluation of the dose-dependent effects of fermented mixed grain enzyme food on adiposity and its metabolic disorders in high-fat diet-induced obese mice[J]. Journal of Medicinal Food, 2021, 24(8): 873-882. doi: 10.1089/jmf.2021.K.0070
    [19] 党芳芳. 副干酪乳杆菌对糖尿病的改善作用及其机制研究[D]. 哈尔滨: 东北农业大学, 2018.
    [20] 郑思颖. 青年群体奶茶过量摄入的个体心理与媒介影响因素研究[D]. 广州: 暨南大学, 2020.
    [21] XIN X, CAI B Y, CHEN C, et al. High-trans fatty acid and high-sugar diets can cause mice with non-alcoholic steatohepatitis with liver fibrosis and potential pathogenesis[J]. Nutrition & Metabolism, 2020, 1(17): 1-12.
    [22] 贾桂燕. 咖啡降血糖活性的研究[D]. 长春: 吉林农业大学, 2005.
    [23] HIROSUMI J, TUNCMAN G, CHANG L F, et al. A central role for JNK in obesity and insulin resistance[J]. Nature, 2002, 420(6913): 333-336. doi: 10.1038/nature01137
    [24] OLEFSKY J M and Glass C K. Macrophages, inflammation, and insulin resistance[J]. Annual Review of Physiology, 2010, 72(1): 219-246. doi: 10.1146/annurev-physiol-021909-135846
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-08-15

目录

    /

    返回文章
    返回