高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

煅烧硫酸铝铵复盐低温合成α-Al2O3:葡萄糖和预压的影响

张鹏 李蔚 陶宏磊

张鹏, 李蔚, 陶宏磊. 煅烧硫酸铝铵复盐低温合成α-Al2O3:葡萄糖和预压的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220517002
引用本文: 张鹏, 李蔚, 陶宏磊. 煅烧硫酸铝铵复盐低温合成α-Al2O3:葡萄糖和预压的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220517002
ZHANG Peng, LI Wei, TAO HongLei. Low-Temperature Synthesis of α-Al2O3 Powder via Calcining Aluminum Ammonium Sulfate Double Salt Process: Effects of Glucose and Pre-pressing[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220517002
Citation: ZHANG Peng, LI Wei, TAO HongLei. Low-Temperature Synthesis of α-Al2O3 Powder via Calcining Aluminum Ammonium Sulfate Double Salt Process: Effects of Glucose and Pre-pressing[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220517002

煅烧硫酸铝铵复盐低温合成α-Al2O3:葡萄糖和预压的影响

doi: 10.14135/j.cnki.1006-3080.20220517002
详细信息
    作者简介:

    张鹏:张 鹏,(1996-),男,湖北孝感人,硕士生,主要研究方向氧化铝粉体及陶瓷。E-mail: zp@mail.ecust.edu.cn

    通讯作者:

    李 蔚,E-mail: liweiwei@ecust.edu.cn

  • 中图分类号: TQ133.1

Low-Temperature Synthesis of α-Al2O3 Powder via Calcining Aluminum Ammonium Sulfate Double Salt Process: Effects of Glucose and Pre-pressing

  • 摘要: 以NH4Al(SO4)2·12H2O为原料,通过加入不同含量的葡萄糖来合成α-Al2O3,并研究了葡萄糖含量和预压处理对α-Al2O3粉体合成工艺和温度的影响。结果表明,葡萄糖的存在可以明显改变相变过程,降低合成温度。添加30%(质量分数,下同)葡萄糖时,可在950 ℃合成单相α-Al2O3粉体,比不添加葡萄糖时低200 ℃左右。添加75%葡萄糖后,α-Al2O3的合成温度可进一步降低至900 ℃。葡萄糖降低α-Al2O3合成温度的主要原因分为两个:一是葡萄糖氧化分解热加速NH4Al(SO4)2·12H2O的热分解,二是使NH4Al(SO4)2·12H2O分散均匀并无定形化。结果还表明,预压可使α-Al2O3的合成温度进一步降低25~50 ℃,这可能是由于团聚体的破坏和粉末分散体的进一步均质化所致。

     

  • 图  1  A0样品在不同温度煅烧4 h后的XRD图谱

    Figure  1.  XRD pattern of sample A0 after calcination at different temperatures for 4 h

    图  2  A2(a)和A4(b)样品在不同温度煅烧4 h后的XRD图谱

    Figure  2.  XRD patterns of samples A2(a) and A4(b) after calcination at different temperatures for 4 h

    图  3  A0(a)、A2(b)和A4(c)样品在不同温度下煅烧4 h后的质量损失曲线

    Figure  3.  Thermogravimetric curves of samples A0 (a), A2(b) and A4(c) after calcination at different temperatures for 4 h

    图  4  A0和A2样品在800℃煅烧4 h后的XRD慢扫描图谱

    Figure  4.  Slow scanning XRD patterns of samples A0 and A2 after calcination at 800℃ for 4 h

    图  5  A1(a)、A3(b)和A5(c)样品在不同温度煅烧4 h后的XRD图谱

    Figure  5.  XRD patterns of A1(a), A3(b) and A5(c)samples after calcination at different temperatures for 4 h

    图  6  A5样品在850 ℃煅烧4 h后的SEM图片

    Figure  6.  SEM image of sample A5 calcined at 850℃ for 4 h

    表  1  不同样品的配方组成

    Table  1.   Proportion of different samples

    Sample numberw(Glucose)/%pressure/25 MPa
    A00-
    A10
    A230-
    A330
    A475-
    A575
    下载: 导出CSV

    表  2  不同配方样品制备得到的α-Al2O3SBET

    Table  2.   SBET of α-Al2O3 prepared by samples of different formulations

    Formula Temperature/℃ SBET/m2·g−1
    A0 1150 8.1265
    A3 900 10.0056
    A5 850 24.5134
    下载: 导出CSV
  • [1] RIVERO-ANTUNEZ P, CANO-CRESPO R, SANCHEZ-BAJO F, et al. Reactive SPS for sol-gel alumina samples: Structure, sintering behavior, and mechanical properties[J]. Journal of the European Ceramic Society, 2021, 41(11): 5548-5557. doi: 10.1016/j.jeurceramsoc.2021.04.060
    [2] CAMARGO N H A, CORREA P, FRANCZAK P F, et al. Synthesis and Characterization of Nanocomposite HA/alpha-Al2O3 Sol-Gel Powders for Biomedical Applications[J]. Advances in Science and Technology, 2014, 87: 61-66.
    [3] MI W, SHARMA G, DONG X, et al. Electrode-supported thin α-alumina separators for lithium-ion batteries[J]. Journal of Power Sources, 2016, 305: 209-216. doi: 10.1016/j.jpowsour.2015.11.067
    [4] LI J, PAN Y B, XIANG C S, et al. Low temperature synthesis of ultrafine alpha-Al2O3 powder by a simple aqueous sol-gel process[J]. Ceramics International, 2006, 32(5): 587-591. doi: 10.1016/j.ceramint.2005.04.015
    [5] YAMAMURA K, KOBAYASHI Y, YASUDA Y, et al. Low temperature synthesis of alpha-alumina through a hydrothermal process combined with a seeding technique[J]. Materials Research Innovations, 2019, 23(3): 166-171. doi: 10.1080/14328917.2017.1405561
    [6] YAMAMURA K, KOBAYASHI Y, YASUDA Y, et al. Fabrication of a-alumina by a combination of a hydrothermal process and a seeding technique[J]. Functional Materials Letters, 2018, 11(5): 1850042.
    [7] SUN X D, LI J G, ZHANG F, et al. Synthesis of nanocrystalline alpha-Al2O3 powders from nanometric ammonium aluminum carbonate hydroxide[J]. Journal of the American Ceramic Society, 2003, 86(8): 1321-1325. doi: 10.1111/j.1151-2916.2003.tb03469.x
    [8] BODAGHI M, MIRHABIBI A R, ZOLFONOON H, et al. Preparation and characterisation of alpha-Al2O3 powder from gamma-Al2O3 powder using mechanical milling technique[J]. Materials Research Innovations, 2008, 12(4): 157-161. doi: 10.1179/143307508X362765
    [9] ZHU L, LIU L, SUN C, et al. Low temperature synthesis of polyhedral α-Al2O3 nanoparticles through two different modes of planetary ball milling[J]. Ceramics International, 2020, 46(18): 28414-28421.
    [10] LIN S M, YU Y L, ZHONG M F, et al. The activation mechanism of oxalic acid on γ-alumina and the formation of α-alumina[J]. Ceramics International, 2021, 47(19): 26869-26876. doi: 10.1016/j.ceramint.2021.06.096
    [11] MORINAGA K, TORIKAI T, NAKAGAWA K, et al. Fabrication of fine α-alumina powders by thermal decomposition of ammonium aluminum carbonate hydroxide (AACH)[J]. Acta Materialia, 2000, 48(18): 4735-4741.
    [12] 孙小曼, 李蔚, 刘会娇, 等. 不同氧化铝前驱体相转过程的研究[J]. 华东理工大学学报(自然科学版), 2021, 47(4): 420-426. doi: 10.14135/j.cnki.1006-3080.20200316001
    [13] LI J G, SUN X. Synthesis and sintering behavior of a nanocrystalline α-alumina powder[J]. Acta Materialia, 2000, 48(12): 3103-3112. doi: 10.1016/S1359-6454(00)00115-4
    [14] BILLIK P, ČAPLOVIČOVá M, TURáNYI T, et al. Low-temperature mechanochemical–thermal synthesis of α-Al2O3 nanocrystals[J]. Materials Research Bulletin, 2011, 46(11): 2135-2140. doi: 10.1016/j.materresbull.2011.06.022
    [15] MI X, ZHANG X, BA X, et al. Preparation and luminescent properties of Cr3+: Al2O3 nano-powders by low-temperature combustion synthesis[J]. Advanced Powder Technology, 2009, 20(2): 164-168. doi: 10.1016/j.apt.2008.06.003
    [16] YAN T, GUO X, ZHANG X, et al. Low temperature synthesis of nano alpha-alumina powder by two-step hydrolysis[J]. Materials Research Bulletin, 2016, 73: 21-28. doi: 10.1016/j.materresbull.2015.08.021
    [17] NASKAR M K. Soft solution processing for the synthesis of alumina nanoparticles in the presence of glucose[J]. Journal of the American Ceramic Society, 2010, 93(5): 1260-1263.
    [18] CHEN H, FAN B B, ZHANG X, et al. , Preparation of alpha-Al2O3 powder by microwave pyrolysis[J], Key Engineering Materials, 2013, 602-603: 88-92.
    [19] PARK H C, PARK Y J, STEVENS R. Synthesis of alumina from high purity alum derived from coal fly ash[J]. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2004, 367(1/2): 166-170. doi: 10.1016/j.msea.2003.09.093
    [20] SHEN H R, GAO L K, MA F T, et al. Aluminum-iron separation in high-acid leaching solution and high-purity alumina preparation[J]. Asia-Pacific Journal of Chemical Engineering, 2021, 16(3): e2623.
    [21] 任岳荣, 朱自康, 徐端莲, 等. 硫酸铝铵热分解法制备高纯氧化铝的研究[J]. 无机盐工业, 1991(6): 21-25.
    [22] HUFFMAN H M, FOX S W. Thermal data. X. The Heats of Combustion and Free Energies, at 25°, of Some Organic Compounds Concerned in Carbohydrate Metabolism[J]. Journal of the American Chemical Society, 1938, 60(6): 1400-1403. doi: 10.1021/ja01273a036
    [23] MACEDO M I F, BERTRAN C A, OSAWA C C. Kinetics of the γ → α alumina phase transformation by quantitative X-ray diffraction[J]. Journal of Materials Science, 2007, 42(8): 2830-2836. doi: 10.1007/s10853-006-1364-1
    [24] YEN F S, WANG M Y, CHANG J L. Temperature reduction of θ- to α-phase transformation induced by high-pressure pretreatments of nano-sized alumina powders derived from boehmite[J]. Journal of Crystal Growth, 2002, 236(1): 197-209.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  12
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-17
  • 网络出版日期:  2022-06-30

目录

    /

    返回文章
    返回