Influence of Pitch with Different Softening Points on the Coating Properties of Natural Graphite
-
摘要: 采用3款不同软化点的石油基沥青,以液相包覆法处理天然石墨,对所得样品的粒度、结构、形貌和电化学性能等进行分析。结果表明,采用250 ℃软化点的沥青包覆天然石墨表现出最佳的电化学性能,其首次库伦效率由84.7%提高到88.04%,250次循环的容量保持率由63.14%提高到81.19%。低软化点沥青由于炭化时轻组分释放,包覆层形成大量微孔导致不可逆容量损失较多,高软化点沥青有利于形成完整包覆层,其对天然石墨的循环性能和倍率性能改善最佳。Abstract: Three petroleum-based pitches with different softening points were used to treat natural graphite by liquid phase coating method. The particle size, structure, morphology and electrochemical properties of the samples were analyzed. The results show that the high softening point pitch can form a thicker coating layer on the natural graphite surface, and the graphite surface becomes more rounded and the defects are reduced. The pitch coated natural graphite with softening point 250 ℃ shows the best electrochemical performance, the first Coulomb efficiency increases from 84.7% to 88.04%, and the capacity retention rate increases from 63.14% to 81.19% after 250 cycles. The low softening point pitch has a large irreversible capacity loss due to the large number of micropores formed by the light component release coating during carbonization, while the high softening point pitch is beneficial to the formation of complete coating, which can improve the cycling and rate performance of natural graphite best.
-
Key words:
- coating pitch /
- natural graphite /
- cycle performance /
- anode materials
-
表 1 包覆沥青的基本性质
Table 1. Basic properties of coating pitches
Samples Softening
Point/℃Coking
Value/%Toluene Insoluble
Content/%Quinoline Insoluble
Content/%C/% H/% N/% S/% O/% H/C P170
P220
P250174
218
25140.1
49.8
57.826.2
47.7
53.70
0.75
1.0793.63
94.07
94.355.76
5.31
5.060.10
0.12
0.110.00
0.00
0.000.51
0.50
0.480.74
0.68
0.64表 2 包覆天然石墨负极材料的氮气吸附数据
Table 2. Nitrogen adsorption data of pitch coated natural graphite anode materials
Samples SBET/(m2·g−1) Smicro/(m2·g−1) Vtotal/(cm3·g−1) NG 9.65 0 0.0316 P170@NG 10.77 4.507 0.0101 P220@NG 5.88 0.076 0.009 P250@NG 4.11 0 0.0058 表 3 包覆天然石墨负极材料的晶体结构参数
Table 3. Crystal structure parameters of pitch coated natural graphite anode materials
Samples 2θ/(°) d002/nm β/° Lc/nm g/% NG 26.481 0.33631 0.182 44.34 89.42 P170@NG 26.44 0.33682 0.23 35.09 83.47 P220@NG 26.44 0.33682 0.227 35.55 83.47 P250@NG 26.459 0.33658 0.225 35.87 86.23 表 4 包覆天然石墨负极材料的恒流充放电性能
Table 4. Constant current charge-discharge performance of pitch coated natural graphite anode materials
Samples Initial discharge
capacity/
(mAh·g−1)Initial charge
capacity /
(mAh·g−1)Irreversible
capacity/
(mAh·g−1)Initial Coulomb
efficiency/(%)NG 401.0 339.7 61.3 84.70 P170@NG 393.2 316.4 76.8 80.46 P220@NG 404.7 348.6 56.1 86.15 P250@NG 384.6 338.6 46.0 88.04 表 5 包覆天然石墨负极材料在0.5C电流密度下的循环性能
Table 5. Cycling properties of pitch coated natural graphite anode material at 0.5C current density
Samples Initial discharge capacity/(mAh·g−1) 250th discharge capacity/(mAh·g−1) Capacity retention/(%) NG 371.4 234.5 63.14 P170@NG 364.2 248.6 68.26 P220@NG 374.8 275.5 73.51 P250@NG 366.8 297.8 81.19 表 6 包覆天然石墨负极材料的电化学阻抗谱参数
Table 6. Parameters of electrochemical impedance spectrum of pitch coated natural graphite anode materials
Samples Rs/Ω Rf/Ω Rct/Ω NG 5.8 19.6 37.6 P170@NG 3.9 26.4 35.8 P220@NG 3.4 14.7 21.0 P250@NG 3.8 5.8 23.0 -
[1] 高驰. 电动汽车百人会: 新能源汽车市场化发展迎来新阶段[J]. 汽车与配件, 2022(7): 42-46. doi: 10.3969/j.issn.1006-0162.2022.07.009 [2] 陶则超, 闫曦, 刘占军. 天然石墨的高价值开发与利用[J]. 炭素技术, 2019, 38(4): 7-16. doi: 10.14078/j.cnki.1001-3741.2019.04.002 [3] ZOU L, KANG F Y, LI X L, et al. Investigations on the modified natural graphite as anode materials in lithium ion battery[J]. Journal of Physics and Chemistry of Solids, 2008, 69(5/6): 1265-1271. doi: 10.1016/j.jpcs.2007.10.096 [4] 马晓龙, 田志强, 王菲, 等. 利用煤系软沥青制备包覆沥青的研究[J]. 燃料与化工, 2021, 52(1): 29-31. doi: 10.16044/j.cnki.rlyhg.2021.01.010 [5] 黄健, 闫慧青, 肖玮. 不同沥青包覆球形天然石墨负极材料结构和性能研究[J]. 炭素技术, 2018, 37(2): 42-47. doi: 10.14078/j.cnki.1001-3741.2018.02.009 [6] 张少阳, 刘宇, 刘洪来. 锂离子在石墨、MoS2及其复合材料中扩散过程的分子模拟及量子力学研究[J]. 华东理工大学学报(自然科学版), 2021, 47(2): 129-136. [7] 叶振坤, 吴其修, 吴有铭, 等. 改性天然石墨在锂离子电池上的应用[J]. 广东化工, 2018, 45(9): 146,125. doi: 10.3969/j.issn.1007-1865.2018.09.065 [8] 王永志, 郭钰静. 酚醛树脂包覆和预成膜共改性石墨作为锂离子电池负极材料的研究[J]. 金属功能材料, 2013, 20(6): 1-4. doi: 10.13228/j.boyuan.issn1005-8192.2013.06.002 [9] 周宏明, 李艳芬, 李荐, 等. 球形天然石墨酚醛树脂二次包覆工艺及其对性能的影响[J]. 中南大学学报(自然科学版), 2013, 44(11): 4423-4428. [10] ZOU L, KANG F Y, ZHENG Y P, et al. Modified natural flake graphite with high cycle performance as anode material in lithium ion batteries[J]. Electrochimica Acta, 2009, 54(15): 3930-3934. doi: 10.1016/j.electacta.2009.02.012 [11] WANG C, ZHAO H, JING W, et al. Electrochemical performance of modified artificial graphite as anode material for lithium ion batteries[J]. Ionics, 2013, 19(2): 221-226. doi: 10.1007/s11581-012-0733-9 [12] 邢宝林, 鲍倜傲, 李旭升, 等. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068. doi: 10.11896/cldb.19080114 [13] 刘先龙, 宋怀河, 陈晓红. 锂离子电池用石墨类炭负极材料的改性[J]. 炭素技术, 2003(5): 27-33. doi: 10.3969/j.issn.1001-3741.2003.05.006 [14] 张晓林, 王成扬, 马铁, 等. 沥青包覆天然石墨作锂离子电池负极材料的研究[J]. 炭素, 2006(4): 8-11. doi: 10.3969/j.issn.1001-8948.2006.04.002 -