高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

不同稀释剂条件下甲烷非催化部分氧化数值模拟

杨梦如 仇鹏 许建良 代正华 王辅臣

杨梦如, 仇鹏, 许建良, 代正华, 王辅臣. 不同稀释剂条件下甲烷非催化部分氧化数值模拟[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220430001
引用本文: 杨梦如, 仇鹏, 许建良, 代正华, 王辅臣. 不同稀释剂条件下甲烷非催化部分氧化数值模拟[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220430001
YANG Mengru, QIU Peng, XU Jianliang, DAI Zhenghua, WANG Fuchen. Numerical Simulation of Non-catalytic Partial Oxidation of Methane Based on Different Diluents[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220430001
Citation: YANG Mengru, QIU Peng, XU Jianliang, DAI Zhenghua, WANG Fuchen. Numerical Simulation of Non-catalytic Partial Oxidation of Methane Based on Different Diluents[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220430001

不同稀释剂条件下甲烷非催化部分氧化数值模拟

doi: 10.14135/j.cnki.1006-3080.20220430001
基金项目: 上海科技创新行动计划(21DZ1209003);上海市优秀技术带头人项目(19XD1434800);国家自然科学基金项目(21776087)
详细信息
    作者简介:

    杨梦如(1995—),女,山东济宁人,硕士生,主要研究方向为天然气非催化部分氧化。E-mail:1635262630@qq.com

    通讯作者:

    代正华,E-mail:chinadai@ecust.edu.cn

  • 中图分类号: TE646

Numerical Simulation of Non-catalytic Partial Oxidation of Methane Based on Different Diluents

  • 摘要: 以工业装置O2/CH4体积比为0.69操作条件为基础,使用ANSYS Fluent16.1开展数值模拟,采用基于雷诺平均方程(RANS) 的 Realizable k-ε 湍流模型、涡耗散概念 (EDC) 模型与 GRI3.0 详细化学反应机理的耦合来模拟炉内的湍流燃烧与化学反应过程。考察了三种稀释剂(N2、H2O、CO2)对转化炉内的温度、自由基(OH、CH2O)分布以及炉膛火焰反应区分布的影响。结果表明:N2和H2O稀释对转化炉内温度、自由基及反应区分布的影响差别很小,CO2稀释下的影响最为显著。在CO2稀释下,炉膛内的最高火焰温度降低了约50 K;OH和CH2O自由基峰值分别降低了大约33%和24.5%。此外,CO2稀释的三种不同效应对转化炉内温度和自由基分布的影响大小依次为:稀释效应>热效应>化学效应。

     

  • 图  1  天然气非催化部分氧化炉结构示意图

    Figure  1.  Structure diagram of the POX reformer

    图  2  喷嘴结构示意图

    Figure  2.  Structure diagram of the burner

    图  3  表1工况1不同密度网格的温度(a)和速度(b)的模拟结果比较

    Figure  3.  Comparison of simulation results of temperature (a) and velocity (b) for different density grids of case1 in table 1

    图  4  模拟与实验结果的对比

    Figure  4.  The comparison of simulation and experimental data results

    图  5  不同稀释剂下的温度(a)和XO2 (b)的分布比较

    Figure  5.  Temperature (a) and XO2 (b) profiles in reformer under different diluents

    图  6  不同稀释剂条件下的炉内的XOH分布

    Figure  6.  XOH profiles under different diluents

    图  7  不同稀释剂条件下的OH摩尔分数(a)和CH2O摩尔分数(b)的轴向分布

    Figure  7.  XOH (a) and XCH2O (b) profiles under different diluents

    图  8  CO2的不同效应对炉内温度分布(a)及温度峰值(b)的影响

    Figure  8.  Different effects of CO2 on the temperature profile (a) and peak value of temperature (b) in the reformer

    图  9  不同条件下的自由基(H、O、OH、CH2O)摩尔分数的对比

    Figure  9.  Comparison of the mole fractions of different radicals (H, O, OH, CH2O) under different conditions

    图  10  CO2的化学效应在不同稀释程度下的变化曲线

    Figure  10.  The change curve of the chemical effect of CO2 under different dilution degrees

    表  1  模拟工况的设定

    Table  1.   Simulation conditions

    CaseO2
    Flow/(L•s−1)
    $ \varphi $CO2
    /%
    $ \varphi $N2
    /%
    $ \varphi $H2O
    /%
    CH4
    Flow/(L•s−1)
    O2/CH4
    Ratio
    10.1770000.2550.69
    1*0.1410000.2040.69
    20.17730000.2550.69
    30.17703000.2550.69
    40.17700300.2550.69
    下载: 导出CSV

    表  2  三种稀释剂条件下的出口气体组成

    Table  2.   Outlet gas composition under three diluent conditions

    Species volume fractions
    H2H2OCH4COCO2N2H2/CO
    N2 dilution0.38770.23000.02970.19180.03820.07382.02
    H2O dilution0.39740.29140.03140.18700.04630.00082.13
    CO2 dilution0.36520.25890.03610.23900.05980.00081.53
    No dilution0.44600.22160.02100.22930.03590.00161.95
    下载: 导出CSV
  • [1] SONG X, GUO Z. Technologies for direct production of flexible H2/CO synthesis gas[J]. Energy Conversion & Management, 2006, 47(5): 560-569.
    [2] FÖRSTER T, VOLOSHCHUK Y, RICHTER A, et al. 3D numerical study of the performance of different burner concepts for the high-pressure non-catalytic natural gas reforming based on the Freiberg semi-industrial test facility HP POX. Fuel. 2017, 203: 954-963.
    [3] SHI B L, HU J, ISHIZUKA S. Carbon dioxide diluted methane/oxygen combustion in a rapidly mixed tubular flame burner[J]. Combustion and Flame, 2015, 162(2): 420-430. doi: 10.1016/j.combustflame.2014.07.022
    [4] 司济沧, 舒子云, 王国昌, 等. 稀释剂和氧浓度对甲烷非预混MILD富氧燃烧影响的模拟研究[J]. 中国电机工程学报, 2021, 41(11): 3692-3702. doi: 10.13334/J.0258-8013.PCSEE.201621
    [5] TU Y J, LIU H, YANG W M. Flame characteristics of CH4/H2 on a jet-in-hot-coflow burner diluted by N2, CO2 and H2O[J]. Energy & Fuels, 2017, 31(3): 3270-3280.
    [6] 杨曹立, 高瑞, 代正华, 等. 气态烃非催化部分氧化烧嘴端面传热过程研究[J]. 华东理工大学学报(自然科学版), 2021, 47(1): 11-16. doi: 10.14135/j.cnki.1006-3080.20191024001
    [7] 栾聪聪, 涂垚杰, 谢逸豪, 等. 基于WSR反应器不同稀释介质条件下MILD燃烧分区特性研究[J]. 燃烧科学与技术, 2019(6): 492-500.
    [8] DUAN X, LI Y, LIU Y, et al. Dilution gas and hydrogen enrichment on the laminar flame speed and flame structure of the methane/air mixture[J]. Fuel, 2020, 281: 118794. doi: 10.1016/j.fuel.2020.118794
    [9] HU E J, JIANG X, HUANG Z H, et al. Numerical study on the effects of diluents on the laminar burning velocity of methane-air mixtures[J]. Energy & Fuels, 2012, 26(7): 4242-4252.
    [10] WANG D, JI C W, WANG S F, et al. Chemical effects of CO2 dilution on CH4 and H2 spherical flame[J]. Energy, 2019, 185: 316-326. doi: 10.1016/j.energy.2019.07.032
    [11] LIU F S, GUO H S, SMALLWOOD G J, et al. The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: Implications for soot and NOx formation[J]. Combustion and Flame, 2001, 125(1): 778-787.
    [12] 徐月亭, 代正华, 李新宇, 等. 甲烷常压非催化部分氧化热模实验研究[J]. 化学工程, 2016, 44(5): 60-64. doi: 10.3969/j.issn.1005-9954.2016.05.012
    [13] GUO W Y, WU Y Z, DONG L, et al. Simulation of non-catalytic partial oxidation and scale-up of natural gas reformer[J]. Fuel Processing Technology, 2012, 98: 45-50. doi: 10.1016/j.fuproc.2012.01.019
    [14] LI X Y, DAI Z H, GUO Q H, et al. Experimental and numerical study of MILD combustion in a bench-scale natural gas partial oxidation gasifier[J]. Fuel, 2017, 193: 197-205. doi: 10.1016/j.fuel.2016.12.056
    [15] GHOLIZADEH A, SHABANIAN S R, GHADIRIAN M, et al. Effect of steam addition and distance between inlet nozzles on non-catalytic POX process under MILD combustion condition[J]. International Journal of Hydrogen Energy, 2022, 47(1): 127-150. doi: 10.1016/j.ijhydene.2021.10.005
    [16] 周新文, 陈彩霞, 王辅臣. 天然气非催化部分氧化反应机理模拟[J]. 华东理工大学学报(自然科学版), 2010, 36(2): 192-197. doi: 10.3969/j.issn.1006-3080.2010.02.006
    [17] ERTESVÅG I S. Scrutinizing proposed extensions to the Eddy Dissipation Concept (EDC) at low turbulence Reynolds numbers and low Damköhler numbers[J]. Fuel, 2022, 309: 122032. doi: 10.1016/j.fuel.2021.122032
    [18] MEDWELL P R, KALT P, DALLY B B. Simultaneous imaging of OH, formaldehyde, and temperature of turbulent nonpremixed jet flames in a heated and diluted coflow[J]. Combustion and Flame, 2007, 148(1-2): 48-61. doi: 10.1016/j.combustflame.2006.10.002
    [19] SJÖHOLM J, ROSELL J, LI B, et al. Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence. Proceedings of Combustion Institute[J]. 2013, 34(1): 1475-1482.
    [20] ZHANG J P, DALLY B B, LI P F, et al. Moderate or intense low-oxygen dilution combustion of methane diluted by CO2 and N2[J]. Energy & Fuels, 2015, 29(7): 4576-4585.
    [21] 韩敏超, 艾育华, 陈 正, 等. 不同预热温度下H2/CO/O2/CO2的层流火焰传播特性[J]. 工程热物理学报, 2016, 37(1): 189-193.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-30
  • 网络出版日期:  2022-07-14

目录

    /

    返回文章
    返回