高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

氢键对位阻型二芳基乙烯有机凝胶性能影响

沈海欣 李萌祺 朱为宏

沈海欣, 李萌祺, 朱为宏. 氢键对位阻型二芳基乙烯有机凝胶性能影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220426001
引用本文: 沈海欣, 李萌祺, 朱为宏. 氢键对位阻型二芳基乙烯有机凝胶性能影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220426001
SHEN Haixin, LI Mengqi, ZHU Weihong. Effect of Hydrogen Bond on the Performance of Organic Gel Based on Sterically-Hindered Diarylethenes[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220426001
Citation: SHEN Haixin, LI Mengqi, ZHU Weihong. Effect of Hydrogen Bond on the Performance of Organic Gel Based on Sterically-Hindered Diarylethenes[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220426001

氢键对位阻型二芳基乙烯有机凝胶性能影响

doi: 10.14135/j.cnki.1006-3080.20220426001
基金项目: 国家基金委重点项目(201636002)
详细信息
    作者简介:

    沈海欣(1996—),男,浙江人,硕士生,主要从事光致变色分子的合成与性能研究。E-mail:1771596139@qq.com

    通讯作者:

    朱为宏,E-mail:whzhu@ecust.edu.cn

  • 中图分类号: O069

Effect of Hydrogen Bond on the Performance of Organic Gel Based on Sterically-Hindered Diarylethenes

  • 摘要: 基于位阻型二芳基乙烯,合成了两种光响应有机凝胶分子ap-BAM和ap-YJ,其荧光和凝胶性能可通过光照有效地可逆调控,并在溶液中均具有优异的光响应性能。其中,ap-BAM可通过氢键结合单元在常温下形成凝胶,而参比分子ap-YJ只能在低温下形成凝胶。研究表明两者均具有聚集诱导发光性能,在凝胶开环态均表现了较强的荧光。当受到紫外光照后,则由凝胶态转化为溶液态,并发生了荧光淬灭。扫描电子显微镜表明,ap-BAM凝胶形成了致密三维多孔网络,而参比ap-YJ凝胶仅形成了致密薄膜,表明具有氢键结构单元的ap-BAM凝胶具有更好的凝胶性能。

     

  • 图  1  目标分子ap-BAM的合成路线

    Figure  1.  Synthetic route of target molecules ap-BAM

    图  2  目标分子ap-YJ的合成路线

    Figure  2.  Synthetic route of target molecules ap-YJ

    图  3  ap-BAM(a~b)、ap-YJ(c~d)的四氢呋喃溶液在紫外光(λ = 313 ± 10 nm)的照射下吸收和荧光的变化。荧光的激发波长分别为324 nm(a~b)、328 nm(c~d)。插图展示了颜色和荧光在紫外光(λ = (313 ± 10 nm))和可见光(λ > 490 nm)照射下的变化

    Figure  3.  Absorption and fluorescence changes of ap-BAM (a~b), ap-YJ (c~d) in tetrahydrofuran upon UV irradiation at (313 ± 10) nm. Variation of the absorption maximum in the visible region. Excitation for fluorescence is set at 324 nm (a~b), 328 nm (c~d), respectively. Inset images show the color and emission changes triggered by UV (λ = (313 ± 10) nm) and visible (λ > 490 nm) light

    图  4  ap-BAM(a)和 ap-YJ(b)的四氢呋喃溶液在紫外光(λ = (313 ± 10) nm)和可见光(λ > 490 nm)的照射下可见光区最大吸收的变化

    Figure  4.  Maximum absorption changes in the visible region of ap-BAM (a), ap-YJ (b) in tetrahydrofuran solution upon irradiated by UV light at (313 ± 10) nm and visible light (λ > 490 nm), alternatively

    图  5  四氢呋喃/水体系中 ap-BAM(a~b)和 c-BAM(c~d)的荧光发射曲线及其相对荧光强度,ap-BAM(e)与 c-BAM(f)对应的荧光变化。荧光激发波长均为324 nm

    Figure  5.  Fluorescence spectra and relative fluorescence intensity I/I0 plots of open isomers ap-BAM (a~b) and c-BAM (c~d) in THF/H2O mixtures with different water volume ratio, the emission changes of ap-BAM (e) and c-BAM (f). Excitation for fluorescence is set at 324 nm

    图  6  四氢呋喃/水体系中ap-YJ(a~b)、c-YJ(c~d)的荧光发射曲线及其相对荧光强度,ap-YJ(e)与c-YJ(f)对应的荧光变化。荧光激发波长均为328 nm

    Figure  6.  Fluorescence spectra and relative fluorescence intensity I/I0 plots of open isomers ap-YJ (a~b) and c-YJ (c~d) in THF/H2O mixtures with different water volume ratio, the emission changes of ap-YJ (e) and c-YJ (f). Excitation for fluorescence is set at 328 nm

    图  7  ap-BAM(a~b)、ap-YJ(c~d)凝胶的吸收和荧光变化。荧光的激发波长分别为324 nm(a~b)、328 nm(c~d)。插图展示开环体到闭环体颜色和荧光的变化

    Figure  7.  Absorption and fluorescence changes of ap-BAM (a~b), ap-YJ (c~d) gel. Excitation for fluorescence is set at 324 nm (a~b), 328 nm (c~d), respectively. Inset images show the color and emission changes from the open form to the closed form

    图  8  ap-BAM(a~b)、BAM-PSS(c~d)、ap-YJ(e~f)、c-YJ(g~h)的干凝胶扫描电镜图

    Figure  8.  SEM images of xerogels of ap-BAM (a~b), BAM-PSS (c~d), ap-YJ (e~f), c-YJ (g~h)

    表  1  凝胶因子ap-BAM和ap-YJ在不同溶剂中的凝胶性能

    Table  1.   Gel properties of gelling factors ap-BAM and ap-YJ in different solvents

    Solventap-BAMap-YJ
    DichloromethaneSS
    MethanolII
    1-ButanolPI
    Tert-butanolII
    n-HexaneSG
    n-OctaneSG
    CyclohexaneGS
    MethylcyclohexaneSS
    AcetonitrileII
    DioxaneSS
    TetrahydrofuranSS
    TolueneSS
    S-Dissolved; I-Insoluble (Insoluble when heated); G-Gel; P-Precipitation (Dissolved when heated, precipitated after cooling)
    下载: 导出CSV
  • [1] STUPP S I, LEBONHEUR V, WALKER K, et al. Supramolecular materials: self-organized nanostructures[J]. Science, 1997, 276(5311): 384-389. doi: 10.1126/science.276.5311.384
    [2] HUANG F, ZHANG X, TANG B Z. Stimuli-responsive materials: a web themed collection[J]. Materials Chemistry Frontiers, 2019, 3(1): 10-11. doi: 10.1039/C8QM90057D
    [3] ZHANG X, CHEN L, LIM K H, et al. The pathway to intelligence: using stimuli-responsive materials as building blocks for constructing smart and functional systems[J]. Advanced Materials, 2019, 31(11): 1804540. doi: 10.1002/adma.201804540
    [4] YAN X, WANG F, ZHENG B, et al. Stimuli-responsive supramolecular polymeric materials[J]. Chemical Society Reviews, 2012, 41(18): 6042-6065. doi: 10.1039/c2cs35091b
    [5] THEATO P, SUMERLIN B S, O'REILLY R K, et al. Stimuli responsive materials[J]. Chemical Society Reviews, 2013, 42(17): 7055-7056. doi: 10.1039/c3cs90057f
    [6] 宋雅萍, 金玲, 管欣悦, 等. pH响应油水分离共聚物膜的合成及分离应用[J]. 华东理工大学学报(自然科学版), 2020, 46(1): 16-23.
    [7] KOLLMAN P A. Noncovalent interactions[J]. Accounts of Chemical Research, 1977, 10(10): 365-371. doi: 10.1021/ar50118a003
    [8] OUYANG G, LIU M. Self-assembly of chiral supra-amphiphiles[J]. Materials Chemistry Frontiers, 2020, 4(1): 155-167. doi: 10.1039/C9QM00571D
    [9] TERECH P, WEISS R G. Low molecular mass gelators of organic liquids and the properties of their gels[J]. Chemical Reviews, 1997, 97(8): 3133-3159. doi: 10.1021/cr9700282
    [10] WANG Y, CHOU J, SUN Y, et al. Supramolecular-based nanofibers[J]. Materials Science & Engineering C, 2019, 101(1): 650-659.
    [11] DEEN G R, LOH X J. Stimuli-responsive cationic hydrogels in drug delivery applications[J]. Gels, 2018, 4(1): 13. doi: 10.3390/gels4010013
    [12] ZHANG W, GAO C. Morphology transformation of self-assembled organic nanomaterials in aqueous solution induced by stimuli-triggered chemical structure changes[J]. Journal of Materials Chemistry A, 2017, 5(31): 16059-16104. doi: 10.1039/C7TA02038D
    [13] BABU S S, PRAVEEN V K, AJAYAGHOSH A. Functional π-gelators and their applications[J]. Chemical Reviews, 2014, 114(4): 1973-2129. doi: 10.1021/cr400195e
    [14] LIM J Y C, GOH S S, LIOW S S, et al. Molecular gel sorbent materials for environmental remediation and wastewater treatment[J]. Journal of Materials Chemistry A, 2019, 7(32): 18759-18791. doi: 10.1039/C9TA05782J
    [15] CAI Y, RAN W, ZHAI Y, et al. Recent progress in supramolecular peptide assemblies as virus mimics for cancer immunotherapy[J]. Biomaterials Science, 2020, 8(4): 1045-1057. doi: 10.1039/C9BM01380F
    [16] DAWN A. Supramolecular gel as the template for catalysis, inorganic superstructure, and pharmaceutical crystallization[J]. International Journal of Molecular Sciences, 2019, 20(3): 781. doi: 10.3390/ijms20030781
    [17] 陆大年, 曹瑾, 胡英. 温度敏感性水凝胶的合成及其相行为研究[J]. 华东理工大学学报(自然科学版), 1995, 21(2): 249-255.
    [18] ERCOLE F, DAVIS T P, EVANS R A. Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond[J]. Polymer Chemistry, 2010, 1(1): 37-54. doi: 10.1039/B9PY00300B
    [19] IRIE M. Photochromism of diarylethene molecules and crystals[J]. Proceedings of the Japan Academy, Series B, 2010, 86(5): 472-483. doi: 10.2183/pjab.86.472
    [20] ZHU W, YANG Y, MÉTIVIER R, et al. Unprecedented stability of a photochromic bisthienylethene based on benzobisthiadiazole as an ethene bridge[J]. Angewandte Chemie International Edition, 2011, 50(46): 10986-10990. doi: 10.1002/anie.201105136
    [21] LI W, JIAO C, LI X, et al. Separation of photoactive conformers based on hindered diarylethenes: efficient modulation in photocyclization quantum yields[J]. Angewandte Chemie International Edition, 2014, 53(18): 4603-4607. doi: 10.1002/anie.201310438
    [22] 李萌祺, 张志鹏, 朱为宏. 位阻和电子效应对位阻型二芳基乙烯光响应性能的影响[J]. 华东理工大学学报(自然科学版), 2020, 46(5): 642-652.
    [23] ADHIKARI B, YAMADA Y, YAMAUCHI M, et al. Light-induced unfolding and refolding of supramolecular polymer nanofibres[J]. Nature Communications, 2017, 8(1): 15254. doi: 10.1038/ncomms15254
    [24] YANG H, LI M, LI C, et al. Unraveling dual aggregation-induced emission behavior in steric-hindrance photochromic system for super resolution imaging[J]. Angewandte Chemie International Edition, 2020, 59(22): 8560-8570. doi: 10.1002/anie.201909830
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  28
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-26
  • 网络出版日期:  2022-06-07

目录

    /

    返回文章
    返回