高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

负载钯簇的氧化硅基杂化胶束的制备及其性能

赵子伟 池哲人 孙奇奇 李永生 牛德超

赵子伟, 池哲人, 孙奇奇, 李永生, 牛德超. 负载钯簇的氧化硅基杂化胶束的制备及其性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220424001
引用本文: 赵子伟, 池哲人, 孙奇奇, 李永生, 牛德超. 负载钯簇的氧化硅基杂化胶束的制备及其性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220424001
ZHAO Ziwei, CHI Zheren, SUN Qiqi, LI Yongsheng, NIU Dechao. Preparation and Performance of Palladium Clusters-Loaded Silica-Based Hybrid Micelles[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220424001
Citation: ZHAO Ziwei, CHI Zheren, SUN Qiqi, LI Yongsheng, NIU Dechao. Preparation and Performance of Palladium Clusters-Loaded Silica-Based Hybrid Micelles[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220424001

负载钯簇的氧化硅基杂化胶束的制备及其性能

doi: 10.14135/j.cnki.1006-3080.20220424001
基金项目: 国家自然科学基金(52072124);上海市东方学者资助计划
详细信息
    作者简介:

    赵子伟(1998—),男,河北邢台人,硕士生,主要研究方向为纳米生物材料。E-mail: zhaozwjulien@163.com

    通讯作者:

    牛德超,E-mail: dcniu@ecust.edu.cn

  • 中图分类号: TB33

Preparation and Performance of Palladium Clusters-Loaded Silica-Based Hybrid Micelles

  • 摘要: 利用Pluronic嵌段共聚物F127的自组装特性和3-巯基丙基三甲氧基硅烷(MPTMS)在碱性环境下的水解缩聚反应,首先制备了具有高稳定性的有机氧化硅基杂化胶束。进一步借助杂化胶束表面的巯基与钯物种的配位作用,利用“原位限域生长”策略制备得到负载钯纳米团簇的有机氧化硅基杂化胶束。采用动态光散射、透射电镜、X射线衍射、红外光谱等表征手段分析了钯簇@氧化硅基杂化胶束的形貌、结构和稳定性,并使用3,3′,5,5′-四甲基联苯胺(TMB)进行显色反应验证了该体系的类过氧化物酶活性,同时探究了其在808 nm近红外光激发下的光热性能。细胞实验结果表明,该钯簇@氧化硅基杂化胶束能够被肿瘤细胞摄取,并具备良好的生物安全性和光热毒性,有望作为一种类过氧化物酶成像引导的光热治疗剂用于癌症的高效安全诊疗。

     

  • 图  1  Pd@FOMs的制备示意图

    Figure  1.  Schematic illustration of Pd@FOMs

    图  2  不同Pd(NH3)4Cl2·H2O浓度制备的Pd@FOMs的(a)动力学直径和(b)Zeta电位; (c)Pd负载效率和负载量

    Figure  2.  (a) Hydrodynamic diameters, (b) Zeta potentials and (c) Pd loading efficiencies and loading capacities of Pd@FOMs prepared with different conentrations of Pd(NH3)4Cl2·H2O

    图  3  Pd@FOMs的透射电镜照片

    Figure  3.  TEM image of Pd@FOMs

    图  4  FOMs和Pd@FOMs的(a)红外光谱图和(b)拉曼光谱图;(c)FOMs、Pd@FOMs和标准JCPDS卡片(序号46-1043)的XRD谱图

    Figure  4.  (a) FT-IR spectra and (b) Raman spectra of FOMs and Pd@FOMs; (c) XRD patterns of FOMs and Pd@FOMs with the standard JCPDS file (No. 46-1043)

    图  5  Pd@FOMs在PBS(pH=7.4)和RPMI-1640培养基中7 d内的水合动力学粒径变化情况

    Figure  5.  Hydrodynamic diameters of Pd@FOMs in PBS (pH=7.4) and RPMI-1640 medium in 7 d

    图  6  (a)类POD酶活性的紫外吸收曲线,以及反应体系的颜色变化;(b)H2O2,Pd@FOMs和Pd@FOMs+H2O2的ESR谱图;(c)类POD酶活性的米氏动力学曲线;(d)类POD酶活性的双倒数曲线

    Figure  6.  (a) UV-vis absorbance spectra showing POD-like activity, and color change of reaction solution; (b) ESR spectra of H2O2, Pd@FOMs and Pd@FOMs+H2O2; (c) Michaelis-Menten kinetics plot of POD-like activity; (d) Lineweaver-Burk fitting plot of POD-like activity

    图  7  (a)FOMs和Pd@FOMs的紫外-可见光吸收曲线;808 nm激光照射(b)不同Pd质量浓度和(c)不同激光功率密度下Pd@FOMs的光热升温曲线;(d)Pd@FOMs(100 mg/L Pd)的光热稳定性

    Figure  7.  (a) UV-vis spectra of FOMs and Pd@FOMs; Temperature elevation curves of Pd@FOMs with varying concentrations of Pd (b) or varying laser power densities (c) upon 808 nm laser irradiation; (d) Photothermal stability of Pd@FOMs (100 mg/L Pd)

    图  8  (a)使用808 nm激光(1.0 W/cm2)照射Pd@FOMs(100 mg/L Pd)15 min后再自然冷却的温度变化;(b)从冷却阶段(15 min后)得到的线性时间拟合数据

    Figure  8.  (a) Temperature change of Pd@FOMs (100 mg/L Pd) upon irradiation for 15 min before the 808 nm laser (1.0 W/cm2) was turned-off; (b) Linear time data obtained from a cooling stage (after 15 min)

    图  9  SMMC-7721细胞和马来酰亚胺-聚乙二醇-罗丹明标记的Pd@FOMs共培养1、4、12、24 h后的激光共聚焦图像

    Figure  9.  CLSM images of SMMC-7721 cells incubated with MAL-PEG-Rhodamine-loaded Pd@FOMs for 1, 4, 12, 24 h

    图  10  (a)RAW264.7细胞和SMMC-7721细胞与不同浓度的Pd@FOMs共培养24 h后的细胞存活率;(b)SMMC-7721细胞经Pd@FOMs光热治疗后的细胞存活率

    *P<0.05, **P<0.01, ***P<0.001

    Figure  10.  (a) Relative cell viabilities of RAW264.7 and SMMC-7721 cells after incubated with Pd@FOMs at varied Pd concentrations for 24 h. (b) Relative cell viabilities of SMMC-7721 cells after PTT with Pd@FOMs

  • [1] JUNG H S, VERWILST P, SHARMA A, et al. Organic molecule-based photothermal agents: An expanding photothermal therapy universe[J]. Chemical Society Reviews, 2018, 47(7): 2280-2297. doi: 10.1039/C7CS00522A
    [2] LIU S, PAN X, LIU H. Two-dimensional nanomaterials for photothermal therapy[J]. Angewandte Chemie International Edition, 2020, 59(15): 5890-5900. doi: 10.1002/anie.201911477
    [3] YANG J, CHOI J, BANG D, et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells[J]. Angewandte Chemie International Edition, 2011, 50(2): 441-444. doi: 10.1002/anie.201005075
    [4] YANG K, XU H, CHENG L, et al. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles[J]. Advanced Materials, 2012, 24(41): 5586-5592. doi: 10.1002/adma.201202625
    [5] CHEN W R, ADAMS R L, BARTELS K E, et al. Chromophore-enhanced in vivo tumor cell destruction using an 808 nm diode laser[J]. Cancer Letters, 1995, 94(2): 125-131. doi: 10.1016/0304-3835(95)03837-M
    [6] WANG Q, WANG J, LV G, et al. Facile synthesis of hydrophilic polypyrrole nanoparticles for photothermal cancer therapy[J]. Journal of Materials Science, 2014, 49(9): 3484-3490. doi: 10.1007/s10853-014-8061-2
    [7] ROBINSON J T, WELSHER K, TABAKMAN S M, et al. High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes[J]. Nano Research, 2010, 3(11): 779-793. doi: 10.1007/s12274-010-0045-1
    [8] YANG K, FENG L, SHI X, et al. Nano-graphene in biomedicine: Theranostic applications[J]. Chemical Society Reviews, 2013, 42(2): 530-547. doi: 10.1039/C2CS35342C
    [9] YANG K, YANG G, CHEN L, et al. FeS nanoplates as a multifunctional nano-theranostic for magnetic resonance imaging guided photothermal therapy[J]. Biomaterials, 2015, 38(1): 1-9.
    [10] TIAN Q, JIANG F, ZOU R, et al. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo[J]. ACS Nano, 2011, 5(12): 9761-9771. doi: 10.1021/nn203293t
    [11] TIAN Q, TANG M, SUN Y, et al. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells[J]. Advanced Materials, 2011, 23(31): 3542-3547. doi: 10.1002/adma.201101295
    [12] LIU T, WANG C, CUI W, et al. Correction: Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets[J]. Nanoscale, 2015, 7(21): 9945-9945. doi: 10.1039/C5NR90077H
    [13] LI B, WANG Q, ZOU R, et al. Cu7.2S4 nanocrystals: A novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells[J]. Nanoscale, 2014, 6(6): 3274-3282. doi: 10.1039/c3nr06242b
    [14] HUANG X, JAIN P K, EL-SAYED I H, et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles[J]. Lasers in Medical Science, 2007, 23(3): 217-228.
    [15] NIE L, CHEN M, SUN X, et al. Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging[J]. Nanoscale, 2014, 6(3): 1271-1276. doi: 10.1039/C3NR05468C
    [16] TANG S, CHEN M, ZHENG N. Multifunctional ultrasmall Pd nanosheets for enhanced near-infrared photothermal therapy and chemotherapy of cancer[J]. Nano Research, 2014, 8(1): 165-174.
    [17] HUANG X, TANG S, MU X, et al. Freestanding palladium nanosheets with plasmonic and catalytic properties[J]. Nature Nanotechnology, 2011, 6(1): 28-32. doi: 10.1038/nnano.2010.235
    [18] MILLER M A, ASKEVOLD B, MIKULA H, et al. Nano-palladium is a cellular catalyst for in vivo chemistry[J]. Nature Communications, 2017, 8(1): 15906-15918. doi: 10.1038/ncomms15906
    [19] TRACHTENBERG J, BOGAARDS A, WEERSINK R A, et al. Vascular targeted photodynamic therapy with palladium-bacteriopheophorbide photosensitizer for recurrent prostate cancer following definitive radiation therapy: Assessment of safety and treatment response[J]. Journal of Urology, 2007, 178(5): 1974-1979. doi: 10.1016/j.juro.2007.07.036
    [20] DONG H, FAN Y, ZHANG W, et al. Catalytic mechanisms of nanozymes and their applications in biomedicine[J]. Bioconjugate Chemistry, 2019, 30(5): 1273-1296. doi: 10.1021/acs.bioconjchem.9b00171
    [21] WU J, WANG X, WANG Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II)[J]. Chemical Society Reviews, 2019, 48(4): 1004-1076. doi: 10.1039/C8CS00457A
    [22] LOYNACHAN C N, SOLEIMANY A P, DUDANI J S, et al. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring[J]. Nature Nanotechnology, 2019, 14(9): 883-890. doi: 10.1038/s41565-019-0527-6
    [23] 江钰, 牛德超, 李永生. 氧化硅纳米颗粒的形貌和孔结构的调控及其对药物输运性能影响[J]. 华东理工大学学报(自然科学版), 2019, 45(2): 250-257.
    [24] QIN X, QIN L, HE J, et al. A confined crosslinking strategy towards an intelligent organosilica-micellar hybrid drug delivery system[J]. Biomaterials Science, 2022, 10(2): 524-535. doi: 10.1039/D1BM01485D
    [25] ZHENG C, KE W, YIN T, et al. Intrinsic peroxidase-like activity and the catalytic mechanism of gold@carbon dots nanocomposites[J]. RSC Advances, 2016, 6(42): 35280-35286. doi: 10.1039/C6RA01917J
    [26] HAN L, SHI J, LIU A. Novel biotemplated MnO2 1D nanozyme with controllable peroxidase-like activity and unique catalytic mechanism and its application for glucose sensing[J]. Sensors and Actuators B: Chemical, 2017, 252(1): 919-926.
    [27] GAO Z, XU M, LU M, et al. Urchin-like (gold core)@(platinum shell) nanohybrids: A highly efficient peroxidase-mimetic system for in situ amplified colorimetric immunoassay[J]. Biosensors and Bioelectronics, 2015, 70(1): 194-201.
    [28] ADENIYI O, SICWETSHA S, MASHAZI P. Nanomagnet-silica nanoparticles decorated with Au@Pd for enhanced peroxidase-like activity and colorimetric glucose sensing[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 1973-1987.
    [29] WU C, HAN X, FENG W, et al. Multi-enzymatic activities of ultrasmall ruthenium oxide for anti-inflammation and neuroprotection[J]. Chemical Engineering Journal, 2021, 411(1): 128543-128556.
    [30] SAHAR S, ZEB A, LING C, et al. A hybrid VOx incorporated hexacyanoferrate nanostructured hydrogel as a multienzyme mimetic via cascade reactions[J]. ACS Nano, 2020, 14(3): 3017-3031. doi: 10.1021/acsnano.9b07886
    [31] SINGH S, TRIPATHI P, KUMAR N, et al. Colorimetric sensing of malathion using palladium-gold bimetallic nanozyme[J]. Biosensors and Bioelectronics, 2017, 92(1): 280-286.
    [32] XIA X, ZHANG J, LU N, et al. Pd-Ir core-shell nanocubes: A type of highly efficient and versatile peroxidase mimic[J]. ACS Nano, 2015, 9(10): 9994-10004. doi: 10.1021/acsnano.5b03525
    [33] HE J, WANG J, GAO S, et al. Biomineralized synthesis of palladium nanoflowers for photothermal treatment of cancer and wound healing[J]. International Journal of Pharmaceutics, 2022, 615(1): 121489-121496.
    [34] TANG S, CHEN M, ZHENG N. Sub-10-nm Pd nanosheets with renal clearance for efficient near-infrared photothermal cancer therapy[J]. Small, 2014, 10(15): 3139-3144. doi: 10.1002/smll.201303631
    [35] 王兆东, 史炉炉, 赵红莉, 等. 可用于电子顺磁共振检测的pH响应载药胶束的制备与体外评价[J]. 华东理工大学学报(自然科学版), 2019, 45(6): 910-918.
    [36] XIAO J W, FAN S X, WANG F, et al. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells[J]. Nanoscale, 2014, 6(8): 4345-4351. doi: 10.1039/C3NR06843A
  • 加载中
图(10)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  73
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-24
  • 网络出版日期:  2022-06-15

目录

    /

    返回文章
    返回