Construction and Optimization of a Novel Expression System Using H2O2 as Inducer in Aspergillus
-
摘要: 构建了一种以构巢曲霉为表达宿主、AnPrxA启动子为表达用启动子、过氧化氢为表达诱导剂的新型高效曲霉表达体系。同时在双氧水诱导和非诱导条件下,评估构巢曲霉过氧化物氧还酶编码基因AnPrxA含启动子(PPRX)的上游调控区介导绿色荧光蛋白(GFP)表达的特征。利用合成生物学手段构建4个含不同长度启动子(PPRX)表达盒的克隆载体并转化尿嘧啶生物合成缺陷型构巢曲霉;分析了AnPrxA基因上游2033 bp序列中潜在的转录调控元件;利用荧光定量PCR测定表达盒拷贝数;考察与PPRX融合的GFP表达情况;并且探讨双氧水诱导浓度和作用时间。结果表明,AnPrxA基因翻译起始密码子上游2033 bp序列、且至少包含9种真菌中常见的基因表达调控元件,其大多数呈多拷贝排列;虽然上游2033 bp的区域对gfp的转录均有贡献,但就GFP蛋白表达而言,AnPrxA上游500 bp的区域已足够;双氧水浓度范围0.5~2.0 mmol/L的诱导条件下,相对对照值,PPRX介导GFP表达的最大诱导比率为3倍,与先前鉴定的2种曲霉属双氧水诱导型启动子相似,但目标蛋白的相对表达强度高于两者。鉴于PPRX介导gfp转录的诱导比率(30倍)显著高于其蛋白表达的诱导比率(3倍),推测目的基因5’端编码区的部分序列可能影响蛋白质的翻译。Abstract: Aspergillus represents a potential host for expression of recombinant proteins after bacteria, yeast, plant and animal cells. Due to the late start of Aspergillus expression system research, the technology is still immature. And the number of alternative expression vectors and available promoters are limited, which limits the application of Aspergillus expression system. On our previous work, we found a peroxiredoxin from Aspergillus nidulans (AnPrxA) could be expressed at a high level and its expression level responded to H2O2 in the medium. Based on the low price and self-decomposition properties of H2O2, we explored a novel and efficient A. nidulans expression system using A. nidulans as the expression host, AnPrxA promoter as the expression promoter, and H2O2 as the expression inducer. The specific research is as follows. Four promoters of different lengths of the 5’untranslated regions (5’-UTR) of A. nidulans (PPRX500, PPRX1000, PPRX1500 and PPRX2033) were amplified and cloned in vectors, and the ability of the four promoters to drive GFP expression was evaluated. The results depicted that all four expression systems were sensitive to H2O2, and PPRX500 was sufficient for GFP expression, but the induction ratio of PPRX2033 is higher. The optimal induction time of H2O2 was determined to be 8 hours. The optimal induction concentration range was 0.5-2.0 mmol/L. Comparison of the conditions with and without the inducer revealed that Pprx2033 mediated a 30-fold induction ratio of GFP at the transcriptional level and a 3-fold induction ratio at the protein expression level. In the induction phase of this expression system, the residual concentration could no longer be detected after 2 hours of adding 2 mmol/L H2O2 in the medium, and could no longer be detected after 1 hour of adding 0.5 mmol/L H2O2.
-
Key words:
- PRX /
- Protein expression /
- Aspergillus nidulans /
- H2O2 /
- Expression regulation
-
表 1 本文所用的PCR扩增引物
Table 1. Primers used in this study
Primer Primer base sequences(5’Š3’) FpyrG ATTCCCCGCGGGAATTCGATACCTGTCG RpyrG GCAATCCGCGGTCAGTGCTTGTCTACCAG P1-prx2033 TTTTGCCCTTGCTGCCTC P2-prx2033 CGGGGGATCCACTAGTGGTTACGACTTCTGGAAAAC P1-prx1500 CAGGGGCTCGAAAACTG P2-prx1500 CGGGGGATCCACTAGTATAGATAGTATTCCAGGTTGATTTCG P1-prx1000 AACACGGATGCCAACTGC P2-prx1000 CGGGGGATCCACTAGTCTATTAAGGATACGTCTGGC P1-prx500 CGTCGCTCGAAGTAGCAG P2-prx500 CGGGGGATCCACTAGTCGGCGATGTGACAAACAG P3-prx GTTCTTCTCCTTTACTCATTGTGTAAGATAGTGGTTG P4-prx GGATGAACTATACAAATAATAGTGATTTAATAGCTCC P5-prx ACCGCGGTGGCGGCCGCAAAGAAGGATTACCTCTAAAC P6-prx TTCGAGATCAGGGGAGG Fgfp ATGAGTAAAGGAGAAGAAC Rgfp TTATTTGTATAGTTCATCCATGCC F-YG-GFP CTGTCCACACAATCTGCCCT R-YG-GFP TGCCATGTGTAATCCCAGCA F-YG-ACT AAGCCCCCATCAATCCCAAG R-YG-ACT TAGAGACGTAGAAGGCGGGA 表 2 方差分析表
Table 2. ANOVA Table
SS df MS F P Groups 172.0035506 3 57.33451686 4.049535963 0.050468081 Error 113.2663444 8 14.15829304 Total 285.2698949 11 25.93362681 -
[1] TAILOR M J, RICHARDSON T. Application of microbial enzymes in food systems and in biotechnology[J]. Advances in Applied Microbiology, 1979, 25: 7-35. [2] LUBERTOZZI D, KEASLING J D. Developing Aspergillus as a host for heterologous expression[J]. Biotechnology Advances, 2009, 27(1): 53-75. doi: 10.1016/j.biotechadv.2008.09.001 [3] GALAGAN J E, CALVO S E, CUOMO C, et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae[J]. Nature, 2005, 438: 1105-1115. doi: 10.1038/nature04341 [4] ARCHER D B, DYER P S. From genomics to post-genomics in Aspergillus[J]. Current Opinion in Microbiology, 2004, 7(5): 499-504. doi: 10.1016/j.mib.2004.08.003 [5] OWEN P W. Production of recombinant proteins by filamentous fungi[J]. Biotechnology Advances, 2012, 30(5): 1119-1139. doi: 10.1016/j.biotechadv.2011.09.012 [6] FLEIßNER A, DERSCH P. Expression and export: Recombinant protein production systems for Aspergillus[J]. Applied Microbiology and Biotechnology, 2010, 87: 1255-1270. doi: 10.1007/s00253-010-2672-6 [7] PACHLINGER R, MITTERBAUER R, ADAM G, et al. Metabolically independent and accurately adjustable Aspergillus sp. expression system[J]. Applied and Environmental Microbiology, 2011, 71(2): 672-678. [8] ISHIDA H, HATA Y, KAWATO A, et al. Isolation of a novel promoter for efficient protein production in Aspergillus oryzae[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68(9): 1849-1857. doi: 10.1271/bbb.68.1849 [9] SHARMA R, KATOCH M, GOVINDAPPA N, et al. Evaluation of the catalase promoter for expressing the alkaline xylanase gene (alx) in Aspergillus niger[J]. FEMS Microbiology Letters, 2012, 327(1): 33-40. doi: 10.1111/j.1574-6968.2011.02454.x [10] ZHOU S, NARUKAMI T, NAMEKI M, et al. Heme-biosynthetic porphobilinogen deaminase protects Aspergillus nidulans from nitrosative stress[J]. Applied and Environmental Microbiology, 2012, 78(1): 103-109. doi: 10.1128/AEM.06195-11 [11] KITAMOTO K. Molecular biology of the koji molds[J]. Advances in Applied Microbiology, 2002, 51: 129-153. [12] THöN M, ABDALLAH Q A L, HORTSCHANSKY P. et al. The CCAAT-binding complex coordinates the oxidative stress response in eukaryotes[J]. Nucleic Acids Research, 2010, 38(4): 1098-1113. doi: 10.1093/nar/gkp1091 [13] FERNANDES M, XIAO H, LIS J T. Fine structure analyses of the Drosophila and Saccharomyces heat shock factor-heat shock element interactions[J]. Nucleic Acids Research, 1994, 22(2): 167-173. doi: 10.1093/nar/22.2.167 [14] PANOZZO C, CAPUANO V, FILLINGER S, et al. The zinc binuclear cluster activator AlcR is able to bind to single sites but requires multiple repeated sites for synergistic activation of the alcA gene in Aspergillus nidulans[J]. Journal of Biological Chemistry, 1997, 272(36): 22859-22865. doi: 10.1074/jbc.272.36.22859 [15] FU YH, MARZLUF G A. nit-2, the major positive-acting nitrogen regulatory gene of Neurospora crassa, encodes a sequence-specific DNA-binding protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(14): 5331-5335. doi: 10.1073/pnas.87.14.5331 [16] ASANO Y, HAGIWARA D, YAMASHINO T, et al. Characterization of the bZip-type transcription factor NapA with reference to oxidative stress response in Aspergillus nidulans[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(7): 1800-1803. doi: 10.1271/bbb.70133 [17] PANOZZO C, CORNILLOT E, FELENBOK B. The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites[J]. Journal of Biological Chemistry, 1998, 273(11): 6367-6372. doi: 10.1074/jbc.273.11.6367 [18] PRATHUMPAI W, MCINTYRE M, NIELSEN J. The effect of CreA in glucose and xylose catabolism in Aspergillus nidulans[J]. Applied Microbiology and Biotechnology, 2004, 63: 748-753. doi: 10.1007/s00253-003-1409-1 [19] WOOD Z A, POOLE L B, KARPLUS P A. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling[J]. Science, 2003, 300(5619): 650-653. doi: 10.1126/science.1080405 [20] WOOD Z A, SCHRöDER E, HARRIS J R, et al. Structure, mechanism and regulation of peroxiredoxins[J]. Trends in Biochemical. Sciences, 2003, 28(1): 32-40. doi: 10.1016/S0968-0004(02)00003-8 [21] WELD R J, PLUMMER K M, CARPENTER M A, et al. Approaches to functional genomics in filamentous fungi[J]. Cell Research, 2006, 16: 31-44. doi: 10.1038/sj.cr.7310006 [22] VERDOES J C, PUNT P J, SCHRICKX J M, et al. Glucoamylase overexpression in Aspergillus niger: molecular genetic analysis of strains containing multiple copies of the glaA gene[J]. Transgenic Research, 1993, 2: 84-92. doi: 10.1007/BF01969381 [23] TOONE W M, MORGAN B A, JONES N. Redox control of AP-1-like factors in yeast and beyond[J]. Oncogene, 2001, 20: 2336-2346. doi: 10.1038/sj.onc.1204384 [24] LITZKA O, THEN BERGH K, BRAKHAGE A A. The Aspergillus nidulans penicillin-biosynthesis gene aat (penDE) is controlled by a CCAAT-containing DNA element[J]. European Journal of Biochemistry, 1996, 238(3): 675-682. doi: 10.1111/j.1432-1033.1996.0675w.x [25] THEN BERGH K, LITZKA O, BRAKHAGE A A. Identification of a major cis-acting DNA element controlling the bidirectionally transcribed penicillin biosynthesis genes acvA (pcbAB) and ipnA (pcbC) of Aspergillus nidulans[J]. Journal of Bacteriology, 1996, 178(13): 3908-3916. doi: 10.1128/jb.178.13.3908-3916.1996 [26] LITTLEJOHN T G, HYNES M J. Analysis of the site of action of the amdR product for regulation of the amdS gene of Aspergillus nidulans[J]. Molecular Genetics and Genomics, 1992, 235: 81-88. doi: 10.1007/BF00286184 [27] WEIDNER G, STEIDL S, BRAKHAGE A A. The Aspergillus nidulans homoaconitase gene lysF is negatively regulated by the multimeric CCAAT-binding complex AnCF and positively regulated by GATA sites[J]. Archives of Microbiology, 2001, 175: 122-132. doi: 10.1007/s002030000246 [28] STEIDL S, HYNES M J, BRAKHAGE A A. The Aspergillus nidulans multimeric CCAAT binding complex AnCF is negatively autoregulated via its hapB subunit gene[J]. Journal of Molecular Biology, 2001, 306(4): 643-653. doi: 10.1006/jmbi.2001.4412 [29] ROTH A, ZUCCARO A, KNEIP S, et al. Characterization of a new inducible promoter for protein expression in Aspergillus niger, using a green fluorescent protein reporter system[J]. Journal of Biotechnology, 2007, 131(2): S256-S257. -