高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

不同烷基链长度脂肪酸钾凝胶的微晶结构及热稳定性

巩涛 王小永

巩涛, 王小永. 不同烷基链长度脂肪酸钾凝胶的微晶结构及热稳定性[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220403001
引用本文: 巩涛, 王小永. 不同烷基链长度脂肪酸钾凝胶的微晶结构及热稳定性[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220403001
GONG Tao, WANG Xiaoyong. Crystalline Structure and Thermal Stability of Fatty Acid Potassium Gels with Different Alkyl Chain Lengths[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220403001
Citation: GONG Tao, WANG Xiaoyong. Crystalline Structure and Thermal Stability of Fatty Acid Potassium Gels with Different Alkyl Chain Lengths[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220403001

不同烷基链长度脂肪酸钾凝胶的微晶结构及热稳定性

doi: 10.14135/j.cnki.1006-3080.20220403001
基金项目: 国家自然科学基金资助项目(21573071)
详细信息
    作者简介:

    巩涛(1997—),男,安徽人,硕士生,主要从事表面活性剂相关研究

    通讯作者:

    王小永,E-mail:xiaoyong@ecust.edu.cn

  • 中图分类号: O647.2

Crystalline Structure and Thermal Stability of Fatty Acid Potassium Gels with Different Alkyl Chain Lengths

  • 摘要: 研究了月桂酸钾(LK)和棕榈酸钾(PK)凝胶的微晶结构、流变性质及热稳定性。室温时,偏光显微镜下质量分数为30%的LK凝胶呈现条带状微晶交叉堆积状态,而质量分数为30%的PK凝胶呈现线状微晶纤维束状态。X射线衍射结果表明不同质量分数的LK保持水合层状微晶结构,增大PK质量分数会使其从水合层状微晶转变为无水层状微晶。温度升高使LK从水合层状微晶转变为六角相液晶和球形胶束,PK从无水层状微晶转变为层状液晶。PK凝胶的储能模量和损耗模量分别是LK凝胶对应值的50倍和15倍,且在20~60℃未出现突降,这说明由长烷基链脂肪酸钾形成的PK凝胶具有更强的微晶网络结构和更高的热稳定性。

     

  • 图  1  LK和PK样品的偏光显微镜照片

    Figure  1.  Polarized optical micrographs of LK and PK samples

    图  2  LK和PK样品的XRD曲线(黑色曲线为无水脂肪酸钾固体)

    Figure  2.  XRD curves of LK and PK samples (Black curve is for solid fatty acid potassium without water)

    图  3  LK和PK凝胶的储能模量和损耗模量随角频率的变化曲线

    Figure  3.  Storage modulus and loss modulus curves versus different angular frequency for LK and PK gels

    图  4  LK和PK凝胶的DSC加热曲线及偏光显微镜照片

    Figure  4.  DSC curves and polarized optical micrographs of LK and PK gels during heating

    图  5  45 ℃时LK和OK凝胶的XRD曲线

    Figure  5.  XRD curves of LK and PK gels at 45 ℃

    图  6  脂肪酸钾凝胶的储能模量和损耗模量随温度的变化曲线

    Figure  6.  Storage modulus G' and loss modulus G" curves of potassium laurate and potassium palmitate gels during heating

  • [1] WANG Y, JIANG L, SHEN Q, et al. Investigation on the self-assembled behaviors of C18 unsaturated fatty acids in arginine aqueous solution[J]. RSC Advances, 2017, 7(66): 41561-41572. doi: 10.1039/C7RA06088B
    [2] 李梦雪. 脂肪酸在洗涤剂中的应用及发展[J]. 中国洗涤用品工业, 2018(8): 71-74. doi: 10.3969/j.issn.1672-2701.2018.08.011
    [3] YUAN Z, LU W, LIU W, et al. Gel phase originating from molecular quasi-crystallization and nanofiber growth of sodium laurate–water[J]. Soft Matter, 2008, 4(8): 1639-1644. doi: 10.1039/b804157a
    [4] NIKIFORIDIS C V, GILBERT E P, SCHOLTEN E. Organogel formation via supramolecular assembly of oleic acid and sodium oleate[J]. RSC Advances, 2015, 5(59): 47466-47475. doi: 10.1039/C5RA05336F
    [5] ZHANG L, LI Q T, HU R T, et al. A thermally stable polyamine/unsaturated fatty acid system: Gelation behaviors and application[J]. Journal of Surfactants and Detergents, 2019, 22(4): 699-709. doi: 10.1002/jsde.12288
    [6] 张婉萍. 化妆品配方与工艺技术第一讲 皂基洁肤产品[J]. 日用化学品科学, 2018, 41(8): 56-60.
    [7] DELBECQ F, NGUYEN R, VAN HECKE E, et al. Design and physicochemical properties of long and stiff fatty low molecular weight oleogelators[J]. Journal of Molecular Liquids, 2019, 295: 111708. doi: 10.1016/j.molliq.2019.111708
    [8] 王仁亮, 朱延美, 冀海伟. 以短链季铵盐/脂肪酸盐为模板合成超微孔二氧化硅[J]. 应用化学, 2019, 36(1): 51-57. doi: 10.11944/j.issn.1000-0518.2019.01.180069
    [9] LI F F, CHEN M H, ZHANG W P. Effect of binary/ternary fatty acids ratio and glycerin on the phase behaviors of soap solutions[J]. Journal of Surfactants and Detergents, 2017, 20(2): 425-434. doi: 10.1007/s11743-017-1927-y
    [10] 李芳芳, 陈明华, 张婉萍. 脂肪酸皂体系的相行为及其稳定性研究[J]. 日用化学工业, 2015, 45(12): 661-669.
    [11] RENGSTLl D, DIAT O, KLEIN R, et al. Influence of chain length and double bond on the aqueous behavior of choline carboxylate soaps[J]. Langmuir, 2013, 29(8): 2506-2519. doi: 10.1021/la304431c
    [12] DU H L, WANG X Y. Lamellar crystalline networks in the gel-like phase of potassium stearate-stearic acid-water[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 629: 127402. doi: 10.1016/j.colsurfa.2021.127402
    [13] MANTSCH H H, WENG S F, YANG P W, et al. Structure and thermotropic phase behavior of sodium and potassium carboxylate ionomers[J]. Journal of Molecular Structure, 1994, 324(1/2): 133-141. doi: 10.1016/0022-2860(93)08234-U
    [14] SAGITANI H. Stability conditions and mechanism of cream soaps: Role of glycerol[J]. Journal of Oleo Science, 2014, 63(4): 365-372. doi: 10.5650/jos.ess13174
    [15] STUART M C, VAN ESCH J, VAN DE PAS J C, et al. Chain-length and solvent dependent morphological changes in sodium soap fibers[J]. Langmuir, 2007, 23(12): 6494-6497. doi: 10.1021/la063633l
    [16] HUANG Y, GE J, CAI Z, et al. The correlation of microstructure morphology with gelation mechanism for sodium soaps in organic solvents[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012, 414: 88-97.
    [17] LIANG J, MA Y, ZHENG Y, et al. Solvent-induced crystal morphology transformation in a ternary soap system: Sodium stearate crystalline fibers and platelets[J]. Langmuir, 2001, 17(21): 6447-6454. doi: 10.1021/la001724r
    [18] DANIEL J, RAJASEKHARAN R. Organogelation of plant oils and hydrocarbons by long-chain saturated FA, fatty alcohols, wax esters, and dicarboxylic acids[J]. Journal of the American Oil Chemists' Society, 2003, 80(5): 417-421. doi: 10.1007/s11746-003-0714-0
    [19] STECK K, PREISIG N, STUBENRAUCH C. Gelling lyotropic liquid crystals with the organogelator 1, 3: 2, 4-dibenzylidene-d-sorbitol: Part II. Microstructure[J]. Langmuir, 2019, 35(52): 17142-17149. doi: 10.1021/acs.langmuir.9b03346
    [20] LYNCH M L, WIREKO F, TAREK M, et al. Intermolecular interactions and the structure of fatty acid-soap crystals[J]. The Journal of Physical Chemistry B, 2001, 105(2): 552-561. doi: 10.1021/jp002602a
    [21] CISTOLA D P, ATKINSON D, HAMILTON J A, et al. Phase behavior and bilayer properties of fatty acids: Hydrated 1: 1 acid-soaps[J]. Biochemistry, 1986, 25(10): 2804-2812. doi: 10.1021/bi00358a011
    [22] LIU X Y. Gelation with small molecules: From formation mechanism to nanostructure architecture[J]. Topics in Current Chemistry, 2005, 256: 1-37.
    [23] THURSCH L J, DIGUISEPPI D, LEWIS T R, et al. Exploring the gel phase of cationic glycylalanylglycine in ethanol/water: I. Rheology and microscopy studies[J]. Journal of Colloid and Interface Science, 2020, 564(6): 499-509.
    [24] 毕伯威, 华启侠, 沈学宁, 等. 基于电荷相互作用的仿贻贝高性能黏合凝胶[J]. 华东理工大学学报(自然科学版), 2020, 46(4): 488-494.
    [25] 徐文龙. 脂肪酸皂水溶液聚集结构、形成机理及其功能研究 [D]. 山东大学, 2016.
    [26] ZHANG M, WEISS R G. Insights into the gelating abilities of ricinelaidic acid and its ammonium salts: How do stereochemistry, charge, and chain lengths control gelation of a long-chain alkenoic acid?[J]. Chemphyschem, 2016, 17(24): 4059-4067. doi: 10.1002/cphc.201600902
    [27] ANTUNES F E, COPPOLA L, GAUDIO D, et al. Shear rheology and phase behaviour of sodium oleate/water mixtures[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 297(1/3): 95-104.
    [28] ROSEVEAR F B. The microscopy of the liquid crystalline neat and middle phases of soaps and synthetic detergents[J]. Journal of the American Oil Chemists' Society, 1954, 31(12): 628-639. doi: 10.1007/BF02545595
    [29] ZHANG M, WEISS R G. Self-Assembled networks and molecular gels derived from long-chain, naturally-occurring fatty acids[J]. Journal of the Brazilian Chemical Society, 2015, 27(2): 239-255.
    [30] 徐凌燕, 杨继萍. 磺酸型双子表面活性剂的溶致液晶结构研究[J]. 化学学报, 2011, 69(3): 335-342.
    [31] ZHU S, PUDNEY P D, HEPPENSTALL-BUTLER M, et al. Interaction of the acid soap of triethanolamine stearate and stearic acid with water[J]. The Journal of Physical Chemistry B, 2007, 111(5): 1016-1024. doi: 10.1021/jp0659047
    [32] ZANA R. Partial phase behavior and micellar properties of tetrabutylammonium salts of fatty acids: Unusual solubility in water and formation of unexpectedly small micelles[J]. Langmuir, 2004, 20(14): 5666-5668. doi: 10.1021/la040033i
    [33] CHEN F, CHEN C, ZHAO D, et al. On-line monitoring of the sol-gel transition temperature of thermosensitive chitosan/β-glycerophosphate hydrogels by low field NMR[J]. Carbohydrate Polymers, 2020, 238: 116196. doi: 10.1016/j.carbpol.2020.116196
    [34] FATRIANSYAH J F, SASAKI Y, ORIHARA H. Nonequilibrium steady-state response of a nematic liquid crystal under simple shear flow and electric fields[J]. Physical review E, 2014, 90(3): 032504.
  • 加载中
图(6)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  89
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-03
  • 网络出版日期:  2022-06-07

目录

    /

    返回文章
    返回