Preparation of Micro-Nano Hierarchical Microstructure of Thermal Barrier Coatings and Its Performance against CMAS Wetting
-
摘要: 通过悬浮液等离子喷涂技术(SPS)在常规大气等离子(APS)热障涂层表面构建了具有微-纳双尺度的表面微观结构,比较在高温下熔融CMAS(Calcium-Magnesium-Aluminum-Silicate)在两种涂层表面上的润湿行为差异,从实验和理论角度分析了表面微观结构差异对于涂层抗CMAS润湿性能的影响。研究结果显示,得益于涂层表面微-纳分级微观结构,SPS涂层的抗CMAS润湿性能较常规APS涂层得到了显著提升。在1300 ℃热处理5 min后,熔滴在SPS涂层上的润湿角为115.1°,而熔融CMAS在常规APS涂层的润湿角为52.1°;热处理10 min后,熔融CMAS在SPS涂层上的润湿角为68.2°,是常规APS涂层的3.2倍。此外,SPS涂层疏松多孔的微观结构特征有利于空气的储存,在熔体润湿涂层表面过程中可起到支撑液滴的作用。该结果为未来抗CMAS腐蚀热障涂层系统的表面微观结构设计提供实践基础。
-
关键词:
- 热障涂层 /
- CMAS腐蚀 /
- 抗润湿性能 /
- 悬浮液等离子喷涂 /
- 微-纳分级表面微观结构
Abstract: The application of thermal barrier coatings (TBCs) is greatly limited by calcium-magnesium-aluminum-silicate (CMAS) attack. The surface microstructure of TBCs is demonstrated its fundamental effect on the wetting behavior of molten CMAS, thus further influencing CMAS resistance of TBCs. In this study, hierarchical microstructure was innovatively fabricated by suspension plasma spray technology (SPS) on air plasma spraying (APS) coating surface, where cauliflower-like microstructure formed by the stacking of numerous micron and nanometer particles were densely distributed. And the wetting behavior of the melt on the coating surface was investigated and compared. Results indicated that SPS coatings showed a superior excellence of repelling the molten CMAS wetting compared with conventional APS coating, resulting from its micro-nano surface microstructure. After kept at 1300 oC for 5 min, the contact angle of melt on SPS coating was 115.1°, which was more than twice that on APS coating (52.1°), and that on SPS coating was 3.2 times larger than that on APS coating after 10 min. The effectiveness of SPS coating in repelling the melt was illustrated by theoretical analysis to be attributed to its micro-nano multi-scale microstructure. Also, air stored in the porous microstructure of SPS coating played a vital role in lifting CMAS droplet during the wetting process. -
表 1 悬浮液配制参数
Table 1. Parameters of suspension
Suspension Dispersant Solvent w(Dispersant)/% Solid mass content/% 1# - Ethanol 5 10 2# PEI Ethanol 5 10 3# PVP Ethanol 5 10 4# PEG Ethanol 5 10 5# PAA-NH4 Deionized water 5 10 表 2 3#悬浮液和5#悬浮液的黏度及表面张力
Table 2. Viscosity and surface tension of 3# sample and 5# sample
Suspensions Dispersant Viscosity/mPa·s Surface tension/mN·m−1 3# PVP 2.033±0.023 23.332±0.005 5# PAA-NH4 1.165±0.003 67.241±0.019 -
[1] CLARKE D R, PHILLPOT S R. Thermal barrier coating materials[J]. Materials Today, 2005, 8(6): 22-29. doi: 10.1016/S1369-7021(05)70934-2 [2] EVAMS A G, MUMM D R, HUTCHINSON J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(5): 505-553. doi: 10.1016/S0079-6425(00)00020-7 [3] 郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展, 2009, 28(Z2): 18-26. [4] LEVI C G, HUTCHINSON J W, VIDAL-SETIF M H, et al. Environmental degradation of thermal-barrier coatings by molten deposits[J]. MRS Bulletin, 2012, 37(10): 932-941. doi: 10.1557/mrs.2012.230 [5] KRAMER S, YANG J, LEVI C G, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits[J]. Journal of the American Ceramic Society, 2006, 89(10): 3167-3175. doi: 10.1111/j.1551-2916.2006.01209.x [6] FANG H J, WANG W Z, HUANG J B, et al. Investigation of CMAS resistance of sacrificial plasma-sprayed mullite-YSZ protective layer on 8YSZ thermal barrier coating[J]. Corrosion Science, 2020, 173: 108764. doi: 10.1016/j.corsci.2020.108764 [7] QU W W, LI S S, CHEN Z H, et al. Hot corrosion behavior and wettability of calcium-magnesium-alumina-silicate (CMAS) on LaTi2Al9O19 ceramic[J]. Corrosion Science, 2020, 162: 108199. doi: 10.1016/j.corsci.2019.108199 [8] LATTHE S S, SUTAR R S, KODAG V S, et al. Self-cleaning superhydrophobic coatings: potential industrial applications[J]. Progress in Organic Coatings, 2019, 128: 52-58. doi: 10.1016/j.porgcoat.2018.12.008 [9] HERMINGHAUS S. Roughness-induced non-wetting[J]. Europhysics Letters, 2000, 52(2): 165-170. doi: 10.1209/epl/i2000-00418-8 [10] BUTT H, ROISMAN I V, BRINKMANN M, et al. Characterization of super liquid-repellent surfaces[J]. Current Opinion in Colloid & Interface Science, 2014, 19(4): 343-354. [11] 解国庆, 张衍, 刘育建, 等. 溶剂挥发和相分离法制备环氧树脂基疏水涂层[J]. 华东理工大学学报(自然科学版), 2022, 48(5): 609-615. [12] YIN B B, SUN M, ZHU W, et al. Wetting and spreading behaviour of molten CMAS towards thermal barrier coatings and its influencing factors[J]. Results in Physics, 2021, 26(10): 104365. [13] KANG Y X, BAI Y, DU G Q, et al. High temperature wettability between CMAS and YSZ coating with tailored surface microstructures[J]. Materials Letters, 2018, 229: 40-43. doi: 10.1016/j.matlet.2018.06.066 [14] ENSIKAT H J, DITSCHE-KURU P, NEINHUIS C, et al. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf[J]. Beilstein Journal of Nanotechnology, 2011, 2(1): 152-161. [15] WALDBILLIG D, KESLER O. The effect of solids and dispersant loadings on the suspension viscosities and deposition rates of suspension plasma sprayed YSZ coatings[J]. Surface & Coatings Technology, 2009, 203(15): 2098-2101. [16] 王喆, 杜令忠, 兰昊, 等. 液相等离子喷涂技术研究进展[J]. 表面技术, 2019, 48(12): 336-346. [17] PATEYRON B, CALVE N, PAWLOWSKI L. Influence of water and ethanol on transport properties of the jets used in suspension plasma spraying[J]. Surface & Coatings Technology, 2013, 220(15): 257-260. [18] GANVIR A, GUPTA M, KUMAR N, et al. Effect of suspension characteristics on the performance of thermal barrier coatings deposited by suspension plasma spray[J]. Ceramics International, 2021, 47(1): 272-283. doi: 10.1016/j.ceramint.2020.08.131 [19] YAGHTIN M, YAGHTIN A, TANG Z L, et al. Improving the rheological and stability characteristics of highly concentrated aqueous yttria stabilized zirconia slurries[J]. Ceramics International, 2020, 46(17): 26991-26999. doi: 10.1016/j.ceramint.2020.07.176 [20] VANEVERY K, KRANE M J M, TRICE R W, et al. Column formation in suspension plasma-sprayed coatings and resultant thermal properties[J]. Journal of Thermal Spray Technology, 2011, 20(4): 817-828. doi: 10.1007/s11666-011-9632-2 [21] CURRY N, VANEVERY K, SNYDER T, et al. Thermal conductivity analysis and lifetime testing of suspension plasma-sprayed thermal barrier coatings[J]. Coatings, 2014, 4(3): 630-650. doi: 10.3390/coatings4030630 [22] BERNARD B, QUETA L, BIANCHI L, et al. Effect of suspension plasma-sprayed YSZ columnar microstructure and bond coat surface preparation on thermal barrier coating properties[J]. Journal of Thermal Spray Technology, 2017, 26(6): 1025-1037. doi: 10.1007/s11666-017-0584-z [23] GUPTA M, MUSALEK R, TESAR T. Microstructure and failure analysis of suspension plasma sprayed thermal barrier coatings[J]. Surface & Coatings Technology, 2020, 382: 125218. [24] CASSIEA B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. doi: 10.1039/tf9444000546 -