高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

热障涂层微-纳分级微观结构制备及其抗CMAS润湿性能

方焕杰 王卫泽 俞泽新

方焕杰, 王卫泽, 俞泽新. 热障涂层微-纳分级微观结构制备及其抗CMAS润湿性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220331001
引用本文: 方焕杰, 王卫泽, 俞泽新. 热障涂层微-纳分级微观结构制备及其抗CMAS润湿性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220331001
FANG Huanjie, WANG Weize, YU Zexin. Preparation of Micro-Nano Hierarchical Microstructure and Its Performance against CMAS Wetting of Thermal Barrier Coatings[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220331001
Citation: FANG Huanjie, WANG Weize, YU Zexin. Preparation of Micro-Nano Hierarchical Microstructure and Its Performance against CMAS Wetting of Thermal Barrier Coatings[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220331001

热障涂层微-纳分级微观结构制备及其抗CMAS润湿性能

doi: 10.14135/j.cnki.1006-3080.20220331001
基金项目: 国家自然科学基金(52175136)
详细信息
    作者简介:

    方焕杰(1995—),男,浙江宁波人,博士研究生,主要研究方向:热障涂层CMAS腐蚀防护技术研究。E-mail:ecustfhj@163.com

    通讯作者:

    王卫泽, E-mail:wangwz@ecust.edu.cn

  • 中图分类号: TG174.4

Preparation of Micro-Nano Hierarchical Microstructure and Its Performance against CMAS Wetting of Thermal Barrier Coatings

  • 摘要: 通过悬浮液等离子喷涂技术(SPS)在常规大气等离子(APS)热障涂层表面构建了具有微-纳双尺度的表面微观结构,比较在高温下熔融CMAS(Calcium-Magnesium-Aluminum-Silicate)在两种涂层表面上的润湿行为差异,从实验和理论角度分析了表面微观结构差异对于涂层抗CMAS润湿性能的影响。研究结果显示,得益于涂层表面微-纳分级微观结构,SPS涂层的抗CMAS润湿性能较常规APS涂层得到了显著提升。在1300 ℃热处理5 min后,熔滴在SPS涂层上的润湿角为115.1°,而熔融CMAS在常规APS涂层的润湿角为52.1°;热处理10 min后,熔融CMAS在SPS涂层上的润湿角为68.2°,是常规APS涂层的3.2倍。此外,SPS涂层疏松多孔的微观结构特征有利于空气的储存,在熔体润湿涂层表面过程中可起到支撑液滴的作用。该结果为未来抗CMAS腐蚀热障涂层系统的表面微观结构设计提供实践基础。

     

  • 图  1  悬浮液静置不同时间后宏观图片及上清液吸光度变化规律:(a)0 h;(b)12 h;(c)上清液吸光度随静置时间变化图

    Figure  1.  Optical image of suspensions after standing for various duration: (a) 0 h; (b) 12 h and (c) absorbance of suspension supernatant

    图  2  YSZ粉末在(a)3#悬浮液和(b)5#悬浮液中的粒径分布

    Figure  2.  Particle size distributions of YSZ powders in (a) sample 3# and (b) sample 5#

    图  3  喷涂态涂层表面结构特征:(a-b)APS;(c-d)SPS

    Figure  3.  Surface characteristic of as-sprayed coatings deposited by (a-b) APS and (c-d) SPS

    图  4  喷涂态涂层表面三维形貌:(a)APS涂层;(b)SPS涂层

    Figure  4.  Three-dimensional surface morphology of as-sprayed coatings: (a) APS coatings; (b) SPS coatings

    图  5  喷涂态涂层截面典型微观形貌:(a-b)APS涂层;(c-d)SPS涂层

    Figure  5.  Typically cross-sectional morphologies of as-sprayed coatings: (a-b) APS coatings; (c-d) SPS coatings

    图  6  SPS技术制备涂层沉积机理示意图

    Figure  6.  Schematic diagram of coating deposition by SPS technology

    图  7  润湿实验后熔融CMAS在APS涂层及SPS涂层上不同热处理时间后的宏观及微观形貌:(a)APS-5 min;(b)APS-10 min;(c)SPS-5 min;(d)SPS-10 min

    Figure  7.  Microscopic morphologies on APS coatings and SPS coatings after wetting test for various time: (a) APS-5 min; (b) APS-10 min; (c) SPS-5 min; (d) SPS-10 min

    图  8  喷涂态涂层的XRD谱图

    Figure  8.  XRD patterns of as-sprayed APS coatings and SPS coatings

    图  9  微-纳双尺度微观结构抗CMAS润湿示意图

    Figure  9.  Schematic diagram showing micro-nano microstructure repelling CMAS wetting

    图  10  润湿实验后CMAS/涂层界面处微观形貌:(a)APS-5 min;(b)APS-10 min;(c)SPS-5 min;(d)SPS-10 min

    Figure  10.  Microscopic morphologies on CMAS/TBCs interface after wetting test: (a) APS-5 min; (b) APS-10 min; (c) SPS-5 min; (d) SPS-10 min

    表  1  悬浮液配置参数

    Table  1.   Parameters of suspension

    SuspensionsDispersantSolventDispersant mass
    content/ (%)
    Solid mass content
    /(%)
    1#-Ethanol510
    2#PEIEthanol510
    3#K30 PVPEthanol510
    4#PEGEthanol510
    5#PAA-NH4Deionized water510
    下载: 导出CSV

    表  2  3#悬浮液和5#悬浮液黏度及表面张力

    Table  2.   Viscosity and surface tension of sample 3# and sample 5#

    SuspensionsDispersantViscosity
    (mPa·s)
    Surface tension
    (mN/m)
    3#PVP2.033±0.02323.332±0.005
    5#PAA-NH41.165±0.00367.241±0.019
    下载: 导出CSV
  • [1] CLARKE D R, PHILLPOT S R. Thermal barrier coating materials[J]. Materials Today, 2005, 8(6): 22-29. doi: 10.1016/S1369-7021(05)70934-2
    [2] EVAMS A G, MUMM D R, HUTCHINSON J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(5): 505-553. doi: 10.1016/S0079-6425(00)00020-7
    [3] 郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展, 2009, 28(Z2): 18-26.
    [4] LEVI C G, HUTCHINSON J W, VIDAL-SETIF M H, et al. Environmental degradation of thermal-barrier coatings by molten deposits[J]. MRS Bulletin, 2012, 37(10): 932-941. doi: 10.1557/mrs.2012.230
    [5] KRAMER S, YANG J, LEVI C G, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits[J]. Journal of the American Ceramic Society, 2006, 89(10): 3167-3175. doi: 10.1111/j.1551-2916.2006.01209.x
    [6] FANG H J, WANG W Z, HUANG J B, et al. Investigation of CMAS resistance of sacrificial plasma-sprayed mullite-YSZ protective layer on 8YSZ thermal barrier coating[J]. Corrosion Science, 2020, 173: 108764. doi: 10.1016/j.corsci.2020.108764
    [7] QU W W, LI S S, CHEN Z H, et al. Hot corrosion behavior and wettability of calcium-magnesium-alumina-silicate (CMAS) on LaTi2Al9O19 ceramic[J]. Corrosion Science, 2020, 162: 108199. doi: 10.1016/j.corsci.2019.108199
    [8] LATTHE S S, SUTAR R S, KODAG V S, et al. Self-cleaning superhydrophobic coatings: potential industrial applications[J]. Progress in Organic Coatings, 2019, 128: 52-58. doi: 10.1016/j.porgcoat.2018.12.008
    [9] HERMINGHAUS S. Roughness-induced non-wetting[J]. Europhysics Letters, 2000, 52(2): 165-170. doi: 10.1209/epl/i2000-00418-8
    [10] BUTT H, ROISMAN I V, BRINKMANN M, et al. Characterization of super liquid-repellent surfaces[J]. Current Opinion in Colloid & Interface Science, 2014, 19(4): 343-354.
    [11] 解国庆, 张衍, 刘育建, 等. 溶剂挥发和相分离法制备环氧树脂基疏水涂层[J/OL]. 华东理工大学学报(自然科学版), 1-7

    2-05-25]. DOI: 10.14135/j.cnki.1006-3080.20210531001.
    [12] YIN B B, SUN M, ZHU W, et al. Wetting and spreading behaviour of molten CMAS towards thermal barrier coatings and its influencing factors[J]. Results in Physics, 2021, 26(10): 104365.
    [13] KANG Y X, BAI Y, DU G Q, et al. High temperature wettability between CMAS and YSZ coating with tailored surface microstructures[J]. Materials Letters, 2018, 229: 40-43. doi: 10.1016/j.matlet.2018.06.066
    [14] ENSIKAT H J, DITSCHE-KURU P, NEINHUIS C, et al. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf[J]. Beilstein Journal of Nanotechnology, 2011, 2(1): 152-161.
    [15] WALDBILLIG D, KESLER O. The effect of solids and dispersant loadings on the suspension viscosities and deposition rates of suspension plasma sprayed YSZ coatings[J]. Surface & Coatings Technology, 2009, 203(15): 2098-2101.
    [16] 王喆, 杜令忠, 兰昊, 等. 液相等离子喷涂技术研究进展[J]. 表面技术, 2019, 48(12): 336-346.
    [17] PATEYRON B, CALVE N, PAWLOWSKI L. Influence of water and ethanol on transport properties of the jets used in suspension plasma spraying[J]. Surface & Coatings Technology, 2013, 220(15): 257-260.
    [18] GANVIR A, GUPTA M, KUMAR N, et al. Effect of suspension characteristics on the performance of thermal barrier coatings deposited by suspension plasma spray[J]. Ceramics International, 2021, 47(1): 272-283. doi: 10.1016/j.ceramint.2020.08.131
    [19] YAGHTIN M, YAGHTIN A, TANG Z L, et al. Improving the rheological and stability characteristics of highly concentrated aqueous yttria stabilized zirconia slurries[J]. Ceramics International, 2020, 46(17): 26991-26999. doi: 10.1016/j.ceramint.2020.07.176
    [20] VANEVERY K, KRANE M J M, TRICE R W, et al. Column formation in suspension plasma-sprayed coatings and resultant thermal properties[J]. Journal of Thermal Spray Technology, 2011, 20(4): 817-828. doi: 10.1007/s11666-011-9632-2
    [21] CURRY N, VANEVERY K, SNYDER T, et al. Thermal conductivity analysis and lifetime testing of suspension plasma-sprayed thermal barrier coatings[J]. Coatings, 2014, 4(3): 630-650. doi: 10.3390/coatings4030630
    [22] BERNARD B, QUETA L, BIANCHI L, et al. Effect of suspension plasma-sprayed YSZ columnar microstructure and bond coat surface preparation on thermal barrier coating properties[J]. Journal of Thermal Spray Technology, 2017, 26(6): 1025-1037. doi: 10.1007/s11666-017-0584-z
    [23] GUPTA M, MUSALEK R, TESAR T. Microstructure and failure analysis of suspension plasma sprayed thermal barrier coatings[J]. Surface & Coatings Technology, 2020, 382: 125218.
    [24] CASSIEA B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. doi: 10.1039/tf9444000546
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 网络出版日期:  2022-08-20

目录

    /

    返回文章
    返回