高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于长链底物亲和的脂肪酶MAS1理性设计改造

唐秀云 王嘉伟 张建国 缪雨露 赵玥 高蓓 张鲁嘉

唐秀云, 王嘉伟, 张建国, 缪雨露, 赵玥, 高蓓, 张鲁嘉. 基于长链底物亲和的脂肪酶MAS1理性设计改造[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220328001
引用本文: 唐秀云, 王嘉伟, 张建国, 缪雨露, 赵玥, 高蓓, 张鲁嘉. 基于长链底物亲和的脂肪酶MAS1理性设计改造[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220328001
TANG Xiuyun, WANG Jiawei, ZHANG Jianguo, MIAO Yulu, ZHAO Yue, GAO Bei, ZHANG Lujia. Rational Design of Lipase MAS1 for the Long-chain Substrate Affinity[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220328001
Citation: TANG Xiuyun, WANG Jiawei, ZHANG Jianguo, MIAO Yulu, ZHAO Yue, GAO Bei, ZHANG Lujia. Rational Design of Lipase MAS1 for the Long-chain Substrate Affinity[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220328001

基于长链底物亲和的脂肪酶MAS1理性设计改造

doi: 10.14135/j.cnki.1006-3080.20220328001
基金项目: 国家重点研发计划(2020YFA0908400);国家自然科学基金(31772007, U1805235);上海市自然科学基金(21ZR1416500);纽约大学全球种子基金;纽约大学-华东师范大学计算化学中心(ECNU创新001公众平台)
详细信息
    作者简介:

    唐秀云(1994—),女,安徽安东人,硕士生,主要研究方向:脂肪酶理性设计改造。E-mail:txy13865167321@163.com

    通讯作者:

    高 蓓,E-mail:gaobei@ecust.edu.cn

    张鲁嘉,E-mail:ljzhang@chem.ecnu.edu.cn;ljzhang@nyu.edu

  • 中图分类号: Q55

Rational Design of Lipase MAS1 for the Long-chain Substrate Affinity

  • 摘要: 探讨了脂肪酶MAS1对长链底物4-硝基苯酚豆蔻肉酸酯(pNP-C14)催化的最适温度、最适pH、pH稳定性,并通过分子动力学模拟计算(MD得出结合自由能),后根据结合自由能的差值初步筛选出了G145W及T141L两个单点突变体。实验表明,与野生型MAS1相比,结合自由能降低显著的突变体G145W的米氏常数(Km)值减小了11%,催化常数与Km(kcat/Km值)为野生型MAS1的1.29倍,突变体G1451对长链底物的亲和能力和催化效率均有提高;而结合自由能降低较小的突变体T141L的Km值增大了22%,kcat/Km值为野生型MAS1的0.88倍,说明酶与底物分子结合自由能的降低并非准确的突变筛选标准。通过分子力学/广义波恩表面积(MM/GBSA)残基拆解分析得出:残基T38、F39、L149、F153、V202、V233对脂肪酶活性口袋与长链底物结合的稳定性贡献较其他残基大;残基T38、G40、N41、N45和T237在脂肪酶对提高长链底物的亲和能力中具有重要贡献,预测为热点残基,其结合自由能的降低可以作为突变筛选的参考标准。

     

  • 图  1  温度对脂肪酶MAS1酶活的影响

    Figure  1.  Effect of temperature on the lipase MAS1 activity

    图  2  (a)最适反应 pH(b)pH稳定性

    Figure  2.  (a) Optimal pH curve (b) stability of pH curve

    图  3  脂肪酶MAS1与分子对接分析

    Figure  3.  Molecular docking Results of lipase MAS1 and pNP-C14

    图  4  MAS1, G145W, T141L双倒数曲线图

    Figure  4.  Lineweaver-Burk plots of the wild-type MAS1, mutants G145W and T141L.

    表  1  引物序列

    Table  1.   Primers

    PrimersSequence(5´→3´)Restriction sites
    MAS1-FATAGAATTCGATGGCGACCGCG
    ACCGCGGCC
    EcoRI
    MAS1-RATACTCGAGTCAATGGTGATGGT
    GATGGTGATGATGG
    XhoI
    T7-FTAATACGACTCACTATA/
    T7-RGCTAGTTATTGCTCAGCG/
    下载: 导出CSV

    表  2  定点突变构建引物序列

    Table  2.   Primers used in sitedirected mutagenes

    PrimersSequence(5´→3´)
    T141L-1RGAGGCCGAGCAGCGTGAGGCCGTGGTTGTCCGG
    T141L-2FCCGGACAACCACGGCCTCACGCTGCTCGGCCTC
    G145W-1RCGGCAGCAGCTTGGTGAGCCAG
    AGCAGCGTGGTGCCGTG
    G145W-2FCACGGCACCACGCTGCTCTGGC
    TCACCAAGCTGCTGCCG
    MAS1-FATAGAATTCGATGGCGACCGCGACCGCGGCC
    MAS1-RATACTCGAGTCAATGGTGATGGTGATGGTGATGATGG
    下载: 导出CSV

    表  3  结合自由能计算结果

    Table  3.   Calculation of total free energy

    LipasesΔG/(kJ·mol−1)ΔΔG/(kJ·mol−1)
    WT−159.896N/A
    G145W−180.611−20.715
    T141L−165.833−5.937
    A135W−157.4062.490
    F47K−159.6070.289
    G76H−119.53340.363
    V35W−151.0728.824
    S230K−151.8628.034
    下载: 导出CSV

    表  4  酶动力学参数测定

    Table  4.   Kinetic parameters of lipases

    LipasesKm/( mmol·L−1)kcat/s−1kcat/Km ( mmol·L−1·s−1)
    WT0.7028.236×1051.173×106
    G145W0.6259.431×1051.510×106
    T141L0.8608.852×1051.030×106
    下载: 导出CSV

    表  5  MM/GBSA残基分解结果

    Table  5.   Results of the MM/GBSA residue decomposition

    Amino acid residuesΔG/(kJ·mol−1
    WTT141LG145W
    G37−4.904−0.469−4.820
    T38−9.573−4.485−15.573
    F39−12.619−5.665−12.142
    G40−3.4230.134−5.699
    N41−0.5190.042−1.314
    N45−1.1300.159−3.506
    H75−0.895−0.218−0.243
    H108−3.582−0.527−5.657
    S109−5.565−1.573−4.577
    T141−4.084−2.678−3.197
    L146−6.996−14.577−6.058
    L149−11.255−8.770−17.782
    L150−3.774−11.757−7.841
    F153−15.104−6.561−12.460
    P154−5.4730.126−2.176
    L167−3.372−18.769−5.623
    Q170−4.510−1.925−2.962
    V202−8.535−1.448−8.393
    H232−1.4900.0420−5.724
    V233−15.138−1.423−14.544
    A234−4.619−0.0330−0.527
    T237−2.7530.0170−5.079
    下载: 导出CSV
  • [1] SAW C L, HUANG Y, KONG A N. Synergistic anti-inflammatory effects of low doses of curcumin in combination with polyunsaturated fatty acids: Docosahexaenoic acid or eicosapentaenoic acid[J]. Biochemical Pharmacology, 2010, 79(3): 421-430. doi: 10.1016/j.bcp.2009.08.030
    [2] HUERTA-YÉPEZ S, TIRADO-RODRIGUEZ A B, HANKINSON O. Role of diets rich in omega-3 and omega-6 in the development of cancer[J]. Boletín Médico Del Hospital Infantil de México (English Edition), 2016, 73(6): 446-456.
    [3] 曹野, 王伟琼, 陈晨, 等. ω-3多不饱和脂肪酸的结构、代谢及与动脉粥样硬化的关系[J]. 中国动脉硬化杂志, 2018, 26(6): 98-108.
    [4] KUMAR A, DHAR K, KANWAR S S, et al. Lipase catalysis in organic solvents: advantages and applications[J]. Biological procedures online, 2016, 18: 2. doi: 10.1186/s12575-016-0033-2
    [5] SHAHIDI F, WANASUNDARA U N. Omega-3 fatty acid concentrates: Nutritional aspects and production technologies[J]. Trends in Food Science & Technology, 1998, 9(6): 230-240.
    [6] CARVALHO, PATRICIA DE OLIVEIRA, CAMPOS P R B, et al. Aplicação de lipases microbianas na obtenção de concentrados de ácidos graxos poliinsaturados[J]. Química Nova, 2003, 26(1): 75-80.
    [7] KAPOOR M, GUPTA M N. Lipase promiscuity and its biochemical applications[J]. Process Biochemistry, 2012, 47(4): 555-569. doi: 10.1016/j.procbio.2012.01.011
    [8] MISSET O, GERRITSE G, JAEGER K E, et al. The structure-function relationship of the lipases from Pseudomonas aeruginosa and Bacillus subtilis[J]. Protein engineering, 1994, 7(4): 523-529. doi: 10.1093/protein/7.4.523
    [9] CASAS-GODOY L, MEUNCHAN M, COT M, et al. Yarrowia lipolytica lipase Lip2: An efficient enzyme for the production of concentrates of docosahexaenoic acid ethyl ester[J]. Journal of Biotechnology, 2014, 180: 30-36. doi: 10.1016/j.jbiotec.2014.03.018
    [10] HARI KRISHNA S, KARANTH N G. Lipases and lipases-catalyzed esterification reactions in nonaqueous media[J]. Science and Engineering, 2002, 44(4): 499-591.
    [11] WANG Y, SRIVASTAVA K C, SHEN G J, et al. Thermostable alkaline lipase from a newly isolated thermophilic Bacillus, strain A30-1 (ATCC 53841)[J]. Journal of Fermentation & Bioengineering, 1995, 79(5): 433-438.
    [12] YUAN D J, LAN D M, R P, YANG B, et al. Screening and characterization of a thermostable lipase from marine Streptomyces sp. strain W007[J]. Biotechnology and Applied Biochemistry, 2016, 63(1): 41-50. doi: 10.1002/bab.1338
    [13] ZHAO Z, HOU S, LAN D, et al. Crystal structure of a lipase from Streptomyces sp. strain W007: Implications for thermostability and regiospecificity[J]. The FEBS Journal, 2017, 284(20): 3506-3519. doi: 10.1111/febs.14211
    [14] MEDINA A R, CERDÁN L E, GIMÉNEZ A G, et al. Lipase-catalyzed esterification of glycerol and polyunsaturated fatty acids from fish and microalgae oils[J]. Journal of Biotechnology, 1999, 70(1/3): 379-391. doi: 10.1016/S0168-1656(99)00091-7
    [15] GE Z, JIANRONG W, QINGYUN T, et al. Improving the catalytic activity and thermostability of MAS1 lipase by alanine substitution[J]. Molecular Biotechnology, 2018, 60: 319-328. doi: 10.1007/s12033-018-0062-y
    [16] MD. Z K, COLIN J B, NALAM M R. A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols[J]. Food Chemistry, 2015, 173: 1030-1036. doi: 10.1016/j.foodchem.2014.10.124
    [17] 魏喜换, 王春娟, 赵梅, 等. 基于理性设计的β-甘露聚糖酶底物亲和力的定向改造[J]. 浙江大学学报(农业与生命科学版), 2014, 40(1): 58-64.
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  93
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 网络出版日期:  2022-05-27

目录

    /

    返回文章
    返回