Rational Design of Lipase MAS1 for the Long-chain Substrate Affinity
-
摘要: 探讨了脂肪酶MAS1对长链底物4-硝基苯酚豆蔻肉酸酯(pNP-C14)催化的最适温度、最适pH、pH稳定性,并通过分子动力学模拟计算(MD得出结合自由能),后根据结合自由能的差值初步筛选出了G145W及T141L两个单点突变体。实验表明,与野生型MAS1相比,结合自由能降低显著的突变体G145W的米氏常数(Km)值减小了11%,催化常数与Km(kcat/Km值)为野生型MAS1的1.29倍,突变体G1451对长链底物的亲和能力和催化效率均有提高;而结合自由能降低较小的突变体T141L的Km值增大了22%,kcat/Km值为野生型MAS1的0.88倍,说明酶与底物分子结合自由能的降低并非准确的突变筛选标准。通过分子力学/广义波恩表面积(MM/GBSA)残基拆解分析得出:残基T38、F39、L149、F153、V202、V233对脂肪酶活性口袋与长链底物结合的稳定性贡献较其他残基大;残基T38、G40、N41、N45和T237在脂肪酶对提高长链底物的亲和能力中具有重要贡献,预测为热点残基,其结合自由能的降低可以作为突变筛选的参考标准。
-
关键词:
- 脂肪酶MAS1 /
- 长链底物 /
- 动力学 /
- MM/GBSA残基拆解 /
- 热点残基
Abstract: In this study, the optimum temperature, optimum pH and pH stability of lipase MAS1 for the catalysis of the long-chain substrate 4-nitrophenol myristate (pNP-C14) were determined. Two single point mutations G145W and T141L were initially screened out according to the decrease of binding free energy by molecular dynamics simulation (Molecular Dynamics, MD). Experiments showed that the Km value of the mutant G145W with a significant decrease in binding free energy was reduced by 11% compared with the wild-type MAS1, and the kcat /Km value was 1.29 times that of the wild-type MAS1. Compared with the wild-type MAS1, the Km value of the mutant T141L with a smaller decrease in binding free energy was increased by 22%, and the kcat /Km value was 0.88 times that of the wild-type MAS1. Compared with the wild type, the affinity and catalytic efficiency of G145W for long-chain substrates were improved, while those of T141L were lower than those of the wild type. It shows that the absolute zero value of the binding energy difference is not an accurate mutation screening criterion. In-depth analysis was performed by Molecular Mechanics / Generalized Born Surface Area (MM/GBSA) residue disassembly. It was concluded that residues T38, F39, L149, F153, V202 and V233 contributed more to the binding stability of the lipase active pocket and long-chain substrates than other residues; residues T38, G40, N41, N45, and T237 have important contributions to the improvement of lipase affinity for long-chain substrates and are predicted to be hotspot residues whose reduced binding free energy can serve as a reference standard for mutation screening.-
Key words:
- Lipase MAS1 /
- long-chain substrate /
- kinetics /
- MM/GBSA /
- hotspot residues
-
表 1 引物序列
Table 1. Primers
Primers Sequence(5´→3´) Restriction sites MAS1-F ATAGAATTCGATGGCGACCGCG
ACCGCGGCCEcoRI MAS1-R ATACTCGAGTCAATGGTGATGGT
GATGGTGATGATGGXhoI T7-F TAATACGACTCACTATA / T7-R GCTAGTTATTGCTCAGCG / 表 2 定点突变构建引物序列
Table 2. Primers used in sitedirected mutagenes
Primers Sequence(5´→3´) T141L-1R GAGGCCGAGCAGCGTGAGGCCGTGGTTGTCCGG T141L-2F CCGGACAACCACGGCCTCACGCTGCTCGGCCTC G145W-1R CGGCAGCAGCTTGGTGAGCCAG
AGCAGCGTGGTGCCGTGG145W-2F CACGGCACCACGCTGCTCTGGC
TCACCAAGCTGCTGCCGMAS1-F ATAGAATTCGATGGCGACCGCGACCGCGGCC MAS1-R ATACTCGAGTCAATGGTGATGGTGATGGTGATGATGG 表 3 结合自由能计算结果
Table 3. Calculation of total free energy
Lipases ΔG/(kJ·mol−1) ΔΔG/(kJ·mol−1) WT −159.896 N/A G145W −180.611 −20.715 T141L −165.833 −5.937 A135W −157.406 2.490 F47K −159.607 0.289 G76H −119.533 40.363 V35W −151.072 8.824 S230K −151.862 8.034 表 4 酶动力学参数测定
Table 4. Kinetic parameters of lipases
Lipases Km/( mmol·L−1) kcat/s−1 kcat/Km ( mmol·L−1·s−1) WT 0.702 8.236×105 1.173×106 G145W 0.625 9.431×105 1.510×106 T141L 0.860 8.852×105 1.030×106 表 5 MM/GBSA残基分解结果
Table 5. Results of the MM/GBSA residue decomposition
Amino acid residues ΔG/(kJ·mol−1) WT T141L G145W G37 −4.904 −0.469 −4.820 T38 −9.573 −4.485 −15.573 F39 −12.619 −5.665 −12.142 G40 −3.423 0.134 −5.699 N41 −0.519 0.042 −1.314 N45 −1.130 0.159 −3.506 H75 −0.895 −0.218 −0.243 H108 −3.582 −0.527 −5.657 S109 −5.565 −1.573 −4.577 T141 −4.084 −2.678 −3.197 L146 −6.996 −14.577 −6.058 L149 −11.255 −8.770 −17.782 L150 −3.774 −11.757 −7.841 F153 −15.104 −6.561 −12.460 P154 −5.473 0.126 −2.176 L167 −3.372 −18.769 −5.623 Q170 −4.510 −1.925 −2.962 V202 −8.535 −1.448 −8.393 H232 −1.490 0.0420 −5.724 V233 −15.138 −1.423 −14.544 A234 −4.619 −0.0330 −0.527 T237 −2.753 0.0170 −5.079 -
[1] SAW C L, HUANG Y, KONG A N. Synergistic anti-inflammatory effects of low doses of curcumin in combination with polyunsaturated fatty acids: Docosahexaenoic acid or eicosapentaenoic acid[J]. Biochemical Pharmacology, 2010, 79(3): 421-430. doi: 10.1016/j.bcp.2009.08.030 [2] HUERTA-YÉPEZ S, TIRADO-RODRIGUEZ A B, HANKINSON O. Role of diets rich in omega-3 and omega-6 in the development of cancer[J]. Boletín Médico Del Hospital Infantil de México (English Edition), 2016, 73(6): 446-456. [3] 曹野, 王伟琼, 陈晨, 等. ω-3多不饱和脂肪酸的结构、代谢及与动脉粥样硬化的关系[J]. 中国动脉硬化杂志, 2018, 26(6): 98-108. [4] KUMAR A, DHAR K, KANWAR S S, et al. Lipase catalysis in organic solvents: advantages and applications[J]. Biological procedures online, 2016, 18: 2. doi: 10.1186/s12575-016-0033-2 [5] SHAHIDI F, WANASUNDARA U N. Omega-3 fatty acid concentrates: Nutritional aspects and production technologies[J]. Trends in Food Science & Technology, 1998, 9(6): 230-240. [6] CARVALHO, PATRICIA DE OLIVEIRA, CAMPOS P R B, et al. Aplicação de lipases microbianas na obtenção de concentrados de ácidos graxos poliinsaturados[J]. Química Nova, 2003, 26(1): 75-80. [7] KAPOOR M, GUPTA M N. Lipase promiscuity and its biochemical applications[J]. Process Biochemistry, 2012, 47(4): 555-569. doi: 10.1016/j.procbio.2012.01.011 [8] MISSET O, GERRITSE G, JAEGER K E, et al. The structure-function relationship of the lipases from Pseudomonas aeruginosa and Bacillus subtilis[J]. Protein engineering, 1994, 7(4): 523-529. doi: 10.1093/protein/7.4.523 [9] CASAS-GODOY L, MEUNCHAN M, COT M, et al. Yarrowia lipolytica lipase Lip2: An efficient enzyme for the production of concentrates of docosahexaenoic acid ethyl ester[J]. Journal of Biotechnology, 2014, 180: 30-36. doi: 10.1016/j.jbiotec.2014.03.018 [10] HARI KRISHNA S, KARANTH N G. Lipases and lipases-catalyzed esterification reactions in nonaqueous media[J]. Science and Engineering, 2002, 44(4): 499-591. [11] WANG Y, SRIVASTAVA K C, SHEN G J, et al. Thermostable alkaline lipase from a newly isolated thermophilic Bacillus, strain A30-1 (ATCC 53841)[J]. Journal of Fermentation & Bioengineering, 1995, 79(5): 433-438. [12] YUAN D J, LAN D M, R P, YANG B, et al. Screening and characterization of a thermostable lipase from marine Streptomyces sp. strain W007[J]. Biotechnology and Applied Biochemistry, 2016, 63(1): 41-50. doi: 10.1002/bab.1338 [13] ZHAO Z, HOU S, LAN D, et al. Crystal structure of a lipase from Streptomyces sp. strain W007: Implications for thermostability and regiospecificity[J]. The FEBS Journal, 2017, 284(20): 3506-3519. doi: 10.1111/febs.14211 [14] MEDINA A R, CERDÁN L E, GIMÉNEZ A G, et al. Lipase-catalyzed esterification of glycerol and polyunsaturated fatty acids from fish and microalgae oils[J]. Journal of Biotechnology, 1999, 70(1/3): 379-391. doi: 10.1016/S0168-1656(99)00091-7 [15] GE Z, JIANRONG W, QINGYUN T, et al. Improving the catalytic activity and thermostability of MAS1 lipase by alanine substitution[J]. Molecular Biotechnology, 2018, 60: 319-328. doi: 10.1007/s12033-018-0062-y [16] MD. Z K, COLIN J B, NALAM M R. A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols[J]. Food Chemistry, 2015, 173: 1030-1036. doi: 10.1016/j.foodchem.2014.10.124 [17] 魏喜换, 王春娟, 赵梅, 等. 基于理性设计的β-甘露聚糖酶底物亲和力的定向改造[J]. 浙江大学学报(农业与生命科学版), 2014, 40(1): 58-64. -