高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

十字型通道内黏弹性撞击流混合机理研究

徐旭东 张巍 李伟锋 刘海峰 王辅臣

徐旭东, 张巍, 李伟锋, 刘海峰, 王辅臣. 十字型通道内黏弹性撞击流混合机理研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220316001
引用本文: 徐旭东, 张巍, 李伟锋, 刘海峰, 王辅臣. 十字型通道内黏弹性撞击流混合机理研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220316001
XU Xudong, ZHANG Wei, LI Weifeng, LIU Haifeng, WANG Fuchen. Mixing Mechanisms of Viscoelastic Impinging Flow in Cross-Shaped Channels[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220316001
Citation: XU Xudong, ZHANG Wei, LI Weifeng, LIU Haifeng, WANG Fuchen. Mixing Mechanisms of Viscoelastic Impinging Flow in Cross-Shaped Channels[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220316001

十字型通道内黏弹性撞击流混合机理研究

doi: 10.14135/j.cnki.1006-3080.20220316001
基金项目: 国家自然科学基金(U21B2088,21776072)
详细信息
    作者简介:

    徐旭东(1997—),男,浙江上虞人,硕士生,主要研究方向为流体力学。E-mail:993527684@qq.com

    通讯作者:

    李伟锋,E-mail: liweif@ecust.edu.cn

  • 中图分类号: TQ012

Mixing Mechanisms of Viscoelastic Impinging Flow in Cross-Shaped Channels

  • 摘要: 采用激光诱导荧光(PLIF)技术对十字型通道中黏弹性流体(聚环氧乙烷溶液)进行可视化研究,重点考察了雷诺数(Re)、聚合物溶液质量分数(w)和通道尺度对流体流动模式、振荡特性以及混合效果的影响。结果表明,对于牛顿流体(水),随着雷诺数增加(20<Re<500),500 μm、6 mm和1 cm的十字型通道内均依次呈现分离流、稳态吞噬流、涡脱落振荡以及非稳态吞噬流;而对于黏弹性流体,随着聚合物溶液质量分数增加(0.01%≤w≤0.30%),流体弹性效应增强,在低聚合物溶液质量分数下微通道内出现了惯性弹性非稳态振荡,导致混合增强,而在较高质量分数下出现了弹性主导的非稳态振荡,弹性非稳态振荡在维森贝格数和雷诺数较低时具有周期性特征,随着维森贝格数和雷诺数增大,振荡周期减小且趋于不规则。对于6 mm和1 cm十字型通道,随着聚合物溶液质量分数的增加,涡脱落振荡和非稳态吞噬流的临界雷诺数增大,在较高聚合物溶液质量分数下非稳态吞噬流消失。

     

  • 图  1  (a)实验流程图及(b)十字型通道示意图

    Figure  1.  Schematic diagram of (a) experimental flow chart and (b) cross-shaped channel

    图  2  500 μm十字型微通道内纯水流动模式

    Figure  2.  Flow patterns for pure water in the cross-shaped channel of 500 μm

    图  3  500 μm十字型微通道内惯性弹性非稳态振荡的PLIF图(w=0.03%)

    Figure  3.  PLIF images of inertial elastic unsteady oscillations in the cross-shaped channel of 500 μm (w=0.03%)

    图  4  PLIF瞬时图(Re=0.37,Wi=2.26,w=0.30%)

    Figure  4.  Instantaneous PLIF snapshots (Re=0.37, Wi=2.26, w=0.30%)

    图  5  不同质量分数聚合物溶液和不同通道尺度下的流动模式相图

    Figure  5.  Map describing flow patterns with different mass fractions of polymer solution and channel sizes

    图  6  不同Wi下归一化浓度变化时间序列及其功率谱(w=0.30%)

    Figure  6.  Time series of normalized concentration and corresponding spectra at different Wi (w=0.30%)

    图  7  不同质量分数流体的斯特劳哈尔数随雷诺数的变化

    Figure  7.  Strouhal numbers for different mass fractions of fluids at various Reynolds number

    图  8  3种尺度通道内不同质量分数流体Is随雷诺数的变化

    Figure  8.  Is varies with Reynolds numbers for different mass fractions of fluids in three different channel sizes

    表  1  PEO溶液流体性质参数

    Table  1.   Fluid property parameters of PEO solutions

    w/%η/(mPa·s)λ/10−3 sη0/η
    0.011.12±0.0212±10.897
    0.031.59±0.0223±10.632
    0.103.90±0.0544±20.258
    0.3025.00±0.1084±40.040
    下载: 导出CSV
  • [1] QIU Y L, HU W J, WU C J, et al. Flow and heat transfer characteristics in a microchannel with a circular synthetic jet[J]. International Journal of Thermal Sciences, 2021, 164(3): 106911.
    [2] 赵云, 向中华. 微流控制备金属/共价有机框架功能材料研究进展[J]. 化工学报, 2020, 71(6): 2547-2563.
    [3] KANG G Y, CARLSON D W, KANG T H, et al. Intracellular nanomaterial delivery via spiral hydroporation[J]. ACS Nano, 2020, 14(3): 3048-3058. doi: 10.1021/acsnano.9b07930
    [4] NIEVES E, VITE G, KOZINA A, et al. Ultrasound-assisted production and optimization of mini-emulsions in a microfluidic chip in continuous-flow[J]. Ultrasonics Sonochemistry, 2021, 74: 105556. doi: 10.1016/j.ultsonch.2021.105556
    [5] HAWARD S J, POOLE R J, ALVES M A, et al. Tricritical spiral vortex instability in cross-slot flow[J]. Physical Review: E, 2016, 93(3): 031101. doi: 10.1103/PhysRevE.93.031101
    [6] BURSHTEIN N, SHEN A Q, HAWARD S J. Controlled symmetry breaking and vortex dynamics in intersecting flows[J]. Physics of Fluids, 2019, 31(3): 034104. doi: 10.1063/1.5087732
    [7] ZHANG J W, YAO T L, LI W F, et al. Trapping region of impinging jets in a cross-shaped channel[J]. AIChE Journal, 2020, 66(2): 16822.
    [8] LARSON R G, SHAQFEH E S G, MULLER S J. A purely elastic instability in Taylor-Couette flow[J]. Journal of Fluid Mechanics, 1990, 218(1): 573-600.
    [9] YUAN C, ZHANG H N, LI X B, et al. Numerical investigation of T-shaped microfluidic oscillator with viscoelastic fluid[J]. Micromachines, 2021, 12(5): 477. doi: 10.3390/mi12050477
    [10] MCKINLEY G H, BROWN A. The wake instability in viscoelastic flow past confined circular cylinders[J]. Philosophical Transactions Physical Sciences & Engineering, 1993, 344(1671): 265-304.
    [11] QIN B, SALIPANTE P F, HUDSON S D, et al. Upstream vortex and elastic wave in the viscoelastic flow around a confined cylinder[J]. Journal of Fluid Mechanics, 2019, 864: 1017-1031.
    [12] GROISMAN A, STEINBERG V. Elastic turbulence in a polymer solution flow[J]. Nature, 2000, 405(6782): 53-55. doi: 10.1038/35011019
    [13] BONN D, INGREMEAU F, AMAROUCHENE Y, et al. Large velocity fluctuations in small-Reynolds-number pipe flow of polymer solutions[J]. Physical Review: E, 2011, 84(4): 045301.
    [14] PAN L, MOROZOV A, WAGNER C, et al. A nonlinear elastic instability in channel flows at low Reynolds numbers[J]. Physical Review Letters, 2013, 110(17): 174502. doi: 10.1103/PhysRevLett.110.174502
    [15] QIN B, SALIPANTE P F, HUDSON S D, et al. Flow resistance and structures in viscoelastic channel flows at low Re[J]. Physical Review Letters, 2019, 123(19): 194501. doi: 10.1103/PhysRevLett.123.194501
    [16] ARRATIA P E, THOMAS C C, DIORIO J, et al. Elastic instabilities of polymer solutions in cross-channel flow[J]. Physical Review Letters, 2006, 96(14): 144502. doi: 10.1103/PhysRevLett.96.144502
    [17] POOLE R J, ALVES M A, OLIVEIRA P J. Purely elastic flow asymmetries[J]. Physical Review Letters, 2007, 99(16): 164503. doi: 10.1103/PhysRevLett.99.164503
    [18] ROCHA G, POOLE R, ALVES M, et al. On extensibility effects in the cross-slot flow bifurcation[J]. Journal of Non-Newtonian Fluid Mechanics, 2008, 156(1): 58-69.
    [19] CRUZ F A, POOLE R J, AFONSO A M, et al. A new viscoelastic benchmark flow: Stationary bifurcation in a cross-slot[J]. Journal of Non-Newtonian Fluid Mechanics, 2014, 214: 57-68. doi: 10.1016/j.jnnfm.2014.09.015
    [20] SOUSA P C, PINHO F T, OLIVEIRA M S N, et al. Purely elastic flow instabilities in microscale cross-slot devices[J]. Soft Matter, 2015, 11(45): 8856-8862. doi: 10.1039/C5SM01298H
    [21] BURSHTEIN N, ZOGRAFOS K, SHEN A Q, et al. Inertioelastic flow instability at a stagnation point[J]. Physical Review: X, 2017, 7(4): 041039. doi: 10.1103/PhysRevX.7.041039
    [22] QIN B, RAN R, SALIPANTE P F, et al. Three-dimensional structures and symmetry breaking in viscoelastic cross-channel flow[J]. Soft Matter, 2020, 16(30): 6969-6974. doi: 10.1039/D0SM00555J
    [23] HAWARD S J, MCKINLEY G H. Instabilities in stagnation point flows of polymer solutions[J]. Physics of Fluids, 2013, 25(8): 083104. doi: 10.1063/1.4818151
    [24] SOUSA P C, PINHO F T, ALVES M A. Purely-elastic flow instabilities and elastic turbulence in microfluidic cross-slot devices[J]. Soft Matter, 2018, 14(8): 1344-1354. doi: 10.1039/C7SM01106G
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  67
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-16
  • 网络出版日期:  2022-06-18

目录

    /

    返回文章
    返回