高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

十字型通道内粘弹性撞击流混合机理研究

徐旭东 张巍 李伟锋 刘海峰 王辅臣

徐旭东, 张巍, 李伟锋, 刘海峰, 王辅臣. 十字型通道内粘弹性撞击流混合机理研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220316001
引用本文: 徐旭东, 张巍, 李伟锋, 刘海峰, 王辅臣. 十字型通道内粘弹性撞击流混合机理研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220316001
XU Xudong, ZHANG Wei, LI Weifeng, LIU Haifeng, WANG Fuchen. Study on Mixing Mechanisms of Viscoelastic Impinging Flow in Cross-shaped Channels[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220316001
Citation: XU Xudong, ZHANG Wei, LI Weifeng, LIU Haifeng, WANG Fuchen. Study on Mixing Mechanisms of Viscoelastic Impinging Flow in Cross-shaped Channels[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220316001

十字型通道内粘弹性撞击流混合机理研究

doi: 10.14135/j.cnki.1006-3080.20220316001
基金项目: 国家自然科学基金项目(U21B2088,21776072)
详细信息
    作者简介:

    徐旭东(1997—),男,浙江上虞人,硕士生,主要研究方向为流体力学。E-mail:993527684@qq.com

    通讯作者:

    李伟锋,E-mail: liweif@ecust.edu.cn

  • 中图分类号: TQ012

Study on Mixing Mechanisms of Viscoelastic Impinging Flow in Cross-shaped Channels

  • 摘要: 采用激光诱导荧光技术(PLIF)对十字型通道中粘弹性流体(聚环氧乙烷溶液)进行可视化研究,重点考察了雷诺数、聚合物溶液浓度和通道尺度对流动模式、振荡特性以及混合效果的影响。结果表明,对于牛顿流体(水),随雷诺数增加(20<Re<500),不同尺度下(500 μm、6 mm和1 cm)十字型通道内均依次呈现分离流、稳态吞噬流、涡脱落振荡以及非稳态吞噬流;而对于粘弹性流体,随着聚合物溶液浓度增加(0.01%≤c≤0.3%),流体弹性效应增强,微通道内在低聚合物溶液浓度下出现了惯性弹性非稳态振荡,导致混合增强,而在较高浓度下出现了弹性主导的非稳态振荡,弹性非稳态振荡在WiRe较低时具有周期性特征,随着WiRe增大,振荡周期减小,且趋于不规则。对于6 mm和1 cm十字型通道,随着聚合物溶液浓度的增加,涡脱落振荡和非稳态吞噬流的临界雷诺数增大,较高聚合物溶液浓度下非稳态吞噬流消失。

     

  • 图  1  实验流程图及十字型通道示意图

    Figure  1.  Schematic diagram of experimental flow chart and cross-shaped reactor

    图  2  500 μm十字微通道内纯水流动模式

    Figure  2.  Flow regimes for pure water in the cross-shaped channel of 500 μm

    图  3  500 μm十字微通道内惯性弹性非稳态振荡的PLIF图(c=0.03%)

    Figure  3.  PLIF images of inertial-elastic unstable oscillations in the cross-shaped channel of 500 μm (c=0.03%)

    图  4  PLIF瞬时图(Re=0.37,Wi=2.26,c=0.3%)

    Figure  4.  Instantaneous PLIF snapshots at Re=0.37, Wi=2.26 and c=0.3%

    图  5  不同聚合物溶液浓度和通道尺度下的流动模式相图

    Figure  5.  Map describing flow regimes with different polymer solution concentrations and channel sizes

    图  6  不同Wi下浓度变化时间序列及其功率谱(c=0.3%)

    Figure  6.  Time series of normalized concentration and corresponding spectrums at different Wi (c=0.3%)

    图  7  不同尺度和浓度下斯特劳哈尔数随雷诺数的变化

    Figure  7.  Strouhal numbers at various Reynolds number for different channel sizes and concentrations

    图  8  三种尺度通道内不同浓度流体Is随雷诺数的变化

    Figure  8.  Is at various Reynolds numbers for three different channel sizes and concentrations

    表  1  PEO溶液流体性质参数

    Table  1.   Fluid property parameters of PEO solutions

    c (wt%)η (mPa·s)λ (s)
    0.011.12±0.02(12±1)×10−3
    0.031.59±0.02(23±1)×10−3
    0.13.90±0.05(44±2)×10−3
    0.325.00±0.10(84±4)×10−3
    下载: 导出CSV
  • [1] QIU Y L, HU W J, WU C J, et al. Flow and heat transfer characteristics in a microchannel with a circular synthetic jet[J]. International Journal of Thermal Sciences, 2021, 164(3): 106911.
    [2] 赵云, 向中华. 微流控制备金属/共价有机框架功能材料研究进展[J]. 化工学报, 2020, 71(6): 2547-2563.
    [3] KANG G Y, CARLSON D W, KANG T H, et al. Intracellular nanomaterial delivery via spiral hydroporation[J]. ACS Nano, 2020, 14(3): 3048-3058. doi: 10.1021/acsnano.9b07930
    [4] NIEVES E, VITE G, KOZINA A, et al. Ultrasound-assisted production and optimization of mini-emulsions in a microfluidic chip in continuous-flow[J]. Ultrasonics Sonochemistry, 2021, 74: 105556. doi: 10.1016/j.ultsonch.2021.105556
    [5] HAWARD S J, POOLE R J, ALVES M A, et al. Tricritical spiral vortex instability in cross-slot flow[J]. Physical Review. E, 2016, 93(3): 031101. doi: 10.1103/PhysRevE.93.031101
    [6] BURSHTEIN N, SHEN A Q, HAWARD S J. Controlled symmetry breaking and vortex dynamics in intersecting flows[J]. Physics of Fluids, 2019, 31(3): 034104. doi: 10.1063/1.5087732
    [7] ZHANG J W, YAO T L, LI W F, et al. Trapping region of impinging jets in a cross-shaped channel[J]. AIChE Journal, 2020, 66(2): 16822.
    [8] LARSON R G, SHAQFEH E S G, MULLER S J. A purely elastic instability in Taylor-Couette flow[J]. Journal of Fluid Mechanics, 1990, 218(1): 573-600.
    [9] YUAN C, ZHANG H N, LI X B, et al. Numerical investigation of T-shaped microfluidic oscillator with viscoelastic fluid[J]. Micromachines, 2021, 12(5): 477. doi: 10.3390/mi12050477
    [10] MCKINLEY G H, BROWN A. The wake instability in viscoelastic flow past confined circular cylinders[J]. Philosophical Transactions Physical Sciences & Engineering, 1993, 344(1671): 265-304.
    [11] QIN B, SALIPANTE P F, HUDSON S D, et al. Upstream vortex and elastic wave in the viscoelastic flow around a confined cylinder[J]. Journal of Fluid Mechanics, 2019, 864: 1017-1031.
    [12] GROISMAN A, STEINBERG V. Elastic turbulence in a polymer solution flow[J]. Nature, 2000, 405(6782): 53-55. doi: 10.1038/35011019
    [13] BONN D, INGREMEAU F, AMAROUCHENE Y, et al. Large velocity fluctuations in small-Reynolds-number pipe flow of polymer solutions[J]. Physical Review E, 2011, 84(4): 045301.
    [14] PAN L, MOROZOV A, WAGNER C, et al. A nonlinear elastic instability in channel flows at low Reynolds numbers[J]. Physical Review Letters, 2013, 110(17): 174502. doi: 10.1103/PhysRevLett.110.174502
    [15] QIN B, SALIPANTE P F, HUDSON S D, et al. Flow resistance and structures in viscoelastic channel flows at low Re[J]. Physical Review Letters, 2019, 123(19): 194501. doi: 10.1103/PhysRevLett.123.194501
    [16] ARRATIA P E, THOMAS C C, DIORIO J, et al. Elastic instabilities of polymer solutions in cross-channel flow[J]. Physical Review Letters, 2006, 96(14): 144502. doi: 10.1103/PhysRevLett.96.144502
    [17] POOLE R J, ALVES M A, OLIVEIRA P J. Purely elastic flow asymmetries[J]. Physical Review Letters, 2007, 99(16): 164503. doi: 10.1103/PhysRevLett.99.164503
    [18] ROCHA G, POOLE R, ALVES M, et al. On extensibility effects in the cross-slot flow bifurcation[J]. Journal of Non-Newtonian Fluid Mechanics, 2008, 156(1): 58-69.
    [19] CRUZ, F A, POOLE, R. J, AFONSO, A M, et al. A new viscoelastic benchmark flow: Stationary bifurcation in a cross-slot[J]. Journal of Non-Newtonian Fluid Mechanics, 2014, 214: 57-68. doi: 10.1016/j.jnnfm.2014.09.015
    [20] SOUSA P C, PINHO F T, OLIVEIRA M S N, et al. Purely elastic flow instabilities in microscale cross-slot devices[J]. Soft Matter, 2015, 11(45): 8856-8862. doi: 10.1039/C5SM01298H
    [21] BURSHTEIN N, ZOGRAFOS K, SHEN A Q, et al. Inertioelastic flow instability at a stagnation point[J]. Physical Review X, 2017, 7(4): 041039. doi: 10.1103/PhysRevX.7.041039
    [22] QIN B, RAN R, SALIPANTE P F, et al. Three-dimensional structures and symmetry breaking in viscoelastic cross-channel flow[J]. Soft Matter, 2020, 16(30): 6969-6974. doi: 10.1039/D0SM00555J
    [23] HAWARD S J, MCKINLEY G H. Instabilities in stagnation point flows of polymer solutions[J]. Physics of Fluids, 2013, 25(8): 083104. doi: 10.1063/1.4818151
    [24] SOUSA P C, PINHO F T, ALVES M A. Purely-elastic flow instabilities and elastic turbulence in microfluidic cross-slot devices[J]. Soft Matter, 2018, 14(8): 1344-1354. doi: 10.1039/C7SM01106G
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  16
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-16
  • 网络出版日期:  2022-06-18

目录

    /

    返回文章
    返回