Mixing Mechanisms of Viscoelastic Impinging Flow in Cross-Shaped Channels
-
摘要: 采用激光诱导荧光(PLIF)技术对十字型通道中黏弹性流体(聚环氧乙烷溶液)进行可视化研究,重点考察了雷诺数(Re)、聚合物溶液质量分数(w)和通道尺度对流体流动模式、振荡特性以及混合效果的影响。结果表明,对于牛顿流体(水),随着雷诺数增加(20<Re<500),500 μm、6 mm和1 cm的十字型通道内均依次呈现分离流、稳态吞噬流、涡脱落振荡以及非稳态吞噬流;而对于黏弹性流体,随着聚合物溶液质量分数增加(0.01%≤w≤0.30%),流体弹性效应增强,在低聚合物溶液质量分数下微通道内出现了惯性弹性非稳态振荡,导致混合增强,而在较高质量分数下出现了弹性主导的非稳态振荡,弹性非稳态振荡在维森贝格数和雷诺数较低时具有周期性特征,随着维森贝格数和雷诺数增大,振荡周期减小且趋于不规则。对于6 mm和1 cm十字型通道,随着聚合物溶液质量分数的增加,涡脱落振荡和非稳态吞噬流的临界雷诺数增大,在较高聚合物溶液质量分数下非稳态吞噬流消失。Abstract: Recently, the microchannel has attracted wide attention due to its safety, reliability and high mixing performance. Most of the current researches focus on Newtonian fluids, but the liquids used in practical applications are often elastic and viscous. Therefore, the planar laser-induced fluorescence (PLIF) technique was used to visualize viscoelastic fluid (polyethylene oxide solution) in cross-shaped channels, focusing on the influence of Reynolds number, channel sizes and polymer solution concentration on flow regimes, oscillatory characteristics and mixing effect. For Newtonian fluid (pure water), the separation flow, steady engulfment flow, vortex shedding oscillations and unsteady engulfment flow were found with the increase of Reynolds number (20<Re<500) in all cross-shaped channels (500 μm, 6 mm and 1 cm). For viscoelastic fluid, as the polymer solution mass fraction increased (0.01%≤w≤0.30%), the fluid elastic effect was enhanced, where an inertioelastic unsteady oscillation occurred at low concentrations which enhanced mixing, and an elastic-dominated unsteady oscillation emerged at higher concentrations within the microchannel.The elastic-dominated unsteady oscillation had periodic characteristics at low Wi and Re. As Wi and Re increased, oscillation period decreased and the flow tended to be irregular. For the 6 mm and 1 cm cross-shaped channels, the critical Reynolds number of vortex shedding oscillations and the unsteady engulfment flow increased with the increase of concentrations, and the unsteady engulfment flow disappeared at higher concentrations.
-
表 1 PEO溶液流体性质参数
Table 1. Fluid property parameters of PEO solutions
w/% η/(mPa·s) λ/10−3 s η0/η 0.01 1.12±0.02 12±1 0.897 0.03 1.59±0.02 23±1 0.632 0.10 3.90±0.05 44±2 0.258 0.30 25.00±0.10 84±4 0.040 -
[1] QIU Y L, HU W J, WU C J, et al. Flow and heat transfer characteristics in a microchannel with a circular synthetic jet[J]. International Journal of Thermal Sciences, 2021, 164(3): 106911. [2] 赵云, 向中华. 微流控制备金属/共价有机框架功能材料研究进展[J]. 化工学报, 2020, 71(6): 2547-2563. [3] KANG G Y, CARLSON D W, KANG T H, et al. Intracellular nanomaterial delivery via spiral hydroporation[J]. ACS Nano, 2020, 14(3): 3048-3058. doi: 10.1021/acsnano.9b07930 [4] NIEVES E, VITE G, KOZINA A, et al. Ultrasound-assisted production and optimization of mini-emulsions in a microfluidic chip in continuous-flow[J]. Ultrasonics Sonochemistry, 2021, 74: 105556. doi: 10.1016/j.ultsonch.2021.105556 [5] HAWARD S J, POOLE R J, ALVES M A, et al. Tricritical spiral vortex instability in cross-slot flow[J]. Physical Review: E, 2016, 93(3): 031101. doi: 10.1103/PhysRevE.93.031101 [6] BURSHTEIN N, SHEN A Q, HAWARD S J. Controlled symmetry breaking and vortex dynamics in intersecting flows[J]. Physics of Fluids, 2019, 31(3): 034104. doi: 10.1063/1.5087732 [7] ZHANG J W, YAO T L, LI W F, et al. Trapping region of impinging jets in a cross-shaped channel[J]. AIChE Journal, 2020, 66(2): 16822. [8] LARSON R G, SHAQFEH E S G, MULLER S J. A purely elastic instability in Taylor-Couette flow[J]. Journal of Fluid Mechanics, 1990, 218(1): 573-600. [9] YUAN C, ZHANG H N, LI X B, et al. Numerical investigation of T-shaped microfluidic oscillator with viscoelastic fluid[J]. Micromachines, 2021, 12(5): 477. doi: 10.3390/mi12050477 [10] MCKINLEY G H, BROWN A. The wake instability in viscoelastic flow past confined circular cylinders[J]. Philosophical Transactions Physical Sciences & Engineering, 1993, 344(1671): 265-304. [11] QIN B, SALIPANTE P F, HUDSON S D, et al. Upstream vortex and elastic wave in the viscoelastic flow around a confined cylinder[J]. Journal of Fluid Mechanics, 2019, 864: 1017-1031. [12] GROISMAN A, STEINBERG V. Elastic turbulence in a polymer solution flow[J]. Nature, 2000, 405(6782): 53-55. doi: 10.1038/35011019 [13] BONN D, INGREMEAU F, AMAROUCHENE Y, et al. Large velocity fluctuations in small-Reynolds-number pipe flow of polymer solutions[J]. Physical Review: E, 2011, 84(4): 045301. [14] PAN L, MOROZOV A, WAGNER C, et al. A nonlinear elastic instability in channel flows at low Reynolds numbers[J]. Physical Review Letters, 2013, 110(17): 174502. doi: 10.1103/PhysRevLett.110.174502 [15] QIN B, SALIPANTE P F, HUDSON S D, et al. Flow resistance and structures in viscoelastic channel flows at low Re[J]. Physical Review Letters, 2019, 123(19): 194501. doi: 10.1103/PhysRevLett.123.194501 [16] ARRATIA P E, THOMAS C C, DIORIO J, et al. Elastic instabilities of polymer solutions in cross-channel flow[J]. Physical Review Letters, 2006, 96(14): 144502. doi: 10.1103/PhysRevLett.96.144502 [17] POOLE R J, ALVES M A, OLIVEIRA P J. Purely elastic flow asymmetries[J]. Physical Review Letters, 2007, 99(16): 164503. doi: 10.1103/PhysRevLett.99.164503 [18] ROCHA G, POOLE R, ALVES M, et al. On extensibility effects in the cross-slot flow bifurcation[J]. Journal of Non-Newtonian Fluid Mechanics, 2008, 156(1): 58-69. [19] CRUZ F A, POOLE R J, AFONSO A M, et al. A new viscoelastic benchmark flow: Stationary bifurcation in a cross-slot[J]. Journal of Non-Newtonian Fluid Mechanics, 2014, 214: 57-68. doi: 10.1016/j.jnnfm.2014.09.015 [20] SOUSA P C, PINHO F T, OLIVEIRA M S N, et al. Purely elastic flow instabilities in microscale cross-slot devices[J]. Soft Matter, 2015, 11(45): 8856-8862. doi: 10.1039/C5SM01298H [21] BURSHTEIN N, ZOGRAFOS K, SHEN A Q, et al. Inertioelastic flow instability at a stagnation point[J]. Physical Review: X, 2017, 7(4): 041039. doi: 10.1103/PhysRevX.7.041039 [22] QIN B, RAN R, SALIPANTE P F, et al. Three-dimensional structures and symmetry breaking in viscoelastic cross-channel flow[J]. Soft Matter, 2020, 16(30): 6969-6974. doi: 10.1039/D0SM00555J [23] HAWARD S J, MCKINLEY G H. Instabilities in stagnation point flows of polymer solutions[J]. Physics of Fluids, 2013, 25(8): 083104. doi: 10.1063/1.4818151 [24] SOUSA P C, PINHO F T, ALVES M A. Purely-elastic flow instabilities and elastic turbulence in microfluidic cross-slot devices[J]. Soft Matter, 2018, 14(8): 1344-1354. doi: 10.1039/C7SM01106G -