高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

立轧塑性变形的力学分析及边缘裂纹研究

杨泊莘 许浩杰 安琦

杨泊莘, 许浩杰, 安琦. 立轧塑性变形的力学分析及边缘裂纹研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220314002
引用本文: 杨泊莘, 许浩杰, 安琦. 立轧塑性变形的力学分析及边缘裂纹研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220314002
YANG Boxin, XU Haojie, AN Qi. Mechanical Analysis of Plastic Deformation and Research on Edge Crack in Vertical Rolling Process[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220314002
Citation: YANG Boxin, XU Haojie, AN Qi. Mechanical Analysis of Plastic Deformation and Research on Edge Crack in Vertical Rolling Process[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220314002

立轧塑性变形的力学分析及边缘裂纹研究

doi: 10.14135/j.cnki.1006-3080.20220314002
详细信息
    作者简介:

    杨泊莘(1994—),男,吉林省吉林市人,博士生,主要研究方向为金属压力加工。E-mail:1572884590@qq.com

    通讯作者:

    安 琦,E-mail:anqi@ecust.edu.cn

  • 中图分类号: TG331

Mechanical Analysis of Plastic Deformation and Research on Edge Crack in Vertical Rolling Process

  • 摘要: 钢坯边缘开裂是轧制工艺中的一个重要难题。本文建立了一种在立轧阶段对钢坯边缘裂纹扩展与闭合进行判断的能量分析模型,根据所提出的Γ-三次曲线函数狗骨模型,推导了对应的塑性流动速度场、应变速率场以及包含裂纹尺寸参数的总功率泛函表达式。基于功率最小化原理,数值求解了狗骨变形参数和轧制力,实现了对临界开裂点的计算。结合具体算例对所建立的计算方法进行了验证,并进一步研究了裂纹尺寸对立轧工艺参数和钢坯力学性能的影响。结果表明,开裂与钢坯边缘的变形程度有关,在一定压下量的前提下,增大立辊半径可以起到抑制边缘开裂、提高裂纹闭合率的作用。

     

  • 图  1  立-平轧工艺示意图

    Figure  1.  Schematic diagram of vertical-horizontal rolling process

    图  2  咬入区截面图

    Figure  2.  Section of rolling zone

    图  3  轧制区的塑性流动

    Figure  3.  Plastic flow in rolling zone

    图  4  GA屈服准则在π平面上的轨迹

    Figure  4.  GA yield locus on the π-plane

    图  5  “V”型裂纹的形状

    Figure  5.  Shape of “V” crack

    图  6  立轧过程能量模型的计算流程图

    Figure  6.  Calculation flow chart of energy model in vertical rolling process

    图  7  裂纹能量模型与Yun模型的轧制力预测对比

    Figure  7.  Comparison of rolling force calculated by crack energy model and Yun’s model

    图  8  摩擦因子对轧后裂纹开口宽度的影响

    Figure  8.  Effects of friction factor on crack width after rolling

    图  9  裂纹尺寸对(a)狗骨骨峰位置和(b)轧制力的影响

    Figure  9.  Effects of crack shape on (a) position of dog-bone peak and (b) rolling force

    Process parameters as follows: No. 1:w0=0.735 m,∆w=0.038 m,h0=0.12 m,R=0.55 m,m=0.3; No. 2:w0=0.78 m,∆w=0.035 m,h0=0.11 m,R=0.475 m,m=0.3

    图  10  裂纹对边缘变形的影响

    Figure  10.  The effects of crack size on edge deformation

  • [1] OKADO M, ARIIZUMI T, NOMA Y, et al. Width behaviour of the head and tail of slabs in edge rolling in hot strip mills[J]. Tetsu-to-Hagane, 1981, 67(15): 2516-2525. doi: 10.2355/tetsutohagane1955.67.15_2516
    [2] SHIBAHARA T, MISAKA Y, KONO T, et al. Edger set-up model at roughing train in hot strip mill[J]. Tetsu-to-Hagane, 1981, 67(15): 2509-2151. doi: 10.2355/tetsutohagane1955.67.15_2509
    [3] TAZOE N, HONJYO H, TAKEUCHI M, et al. New form of hot strip mill width rolling installations[C]// AISE Spring Conference, Dearborn: [s.n.], 1984, 85-88.
    [4] GINZBURG V B, KAPLAN N, BAKHTAR F, et al. Width control in hot strip mills[J]. Iron and Steel Engineer, 1991, 68(6): 25-39.
    [5] HUISMANN R L. Large width reductions in a hot strip mill[C]// Commission of the European Communities, Brussels: [s.n.]. 1983, 54-56.
    [6] 熊尚武, 朱祥霖, 刘相华, 等. 热带粗轧机组立轧稳定轧制的变形规律的实验研究[J]. 钢铁, 1995(S1): 57-61.
    [7] 熊尚武, 朱祥霖, 刘相华, 等. 热带粗轧机组调宽工艺中数学模型的建立[J]. 上海金属, 1997(1): 39-43.
    [8] LUNDBERG, E S. An approximate theory for calculation of roll torque during edge rolling of steel slabs[J]. Steel Research, 1986, 57(7): 325-330. doi: 10.1002/srin.198600773
    [9] LUNDBERG S E, GUSTAFSSON T. Roll force, torque, lever arm coefficient, and strain distribution in edge rolling[J]. Journal of Materials Engineering & Performance, 1993, 2(6): 873-879.
    [10] LUNDBERG, S E. A model for prediction of roll force and torque in edge rolling[J]. Steel Research International, 2007, 78(2): 160-166. doi: 10.1002/srin.200705874
    [11] 张宇峰, 张浩宇, 陈立佳, 等. 以滑移线场计算立轧轧制力[J]. 塑性工程学报, 2018, 25(6): 288-291. doi: 10.3969/j.issn.1007-2012.2018.06.042
    [12] 张宇峰, 邸洪双, 李旭, 等. 工程法与滑移线场组合解析立轧轧制力[J]. 塑性工程学报, 2020, 27(1): 153-158.
    [13] YUN D, LEE D, KIM J, et al. A new model for the prediction of the dog-bone shape in steel mills[J]. Journal of Iron & Steel Research, International, 2012, 52(6): 1109-1117.
    [14] LI X, WANG H, LIU Y, et al. Analysis of edge rolling based on continuous symmetric parabola curves[J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2016, 39(4): 1-10.
    [15] LIU Y M, MA G S, ZHANG D H, et al. Upper bound analysis of rolling force and dog-bone shape via sine function model in vertical rolling[J]. Journal of Materials Processing Technology, 2015, 223: 91-97. doi: 10.1016/j.jmatprotec.2015.03.051
    [16] LIU Y M, ZHANG D H, ZHAO D W, et al. Analysis of vertical rolling using double parabolic model and stream function velocity field[J]. International Journal of Advanced Manufacturing Technology, 2016, 82(5-8): 1153-1161. doi: 10.1007/s00170-015-7393-7
    [17] LIU Y M, SUN J, ZHANG D H, et al. Three-dimensional analysis of edge rolling based on dual-stream function velocity field theory[J]. Journal of Manufacturing Processes, 2018, 34(AUG.): 349-355.
    [18] 刘元铭, 王涛, 王振华, 等. 基于双流函数的立轧力能参数研究[J]. 塑性工程学报, 2020, 27(8): 172-178. doi: 10.3969/j.issn.1007-2012.2020.08.023
    [19] LIU Y M, HAO P J, WANG T, et al. Mathematical model for vertical rolling deformation based on energy method[J]. International Journal of Advanced Manufacturing Technology, 2020, 107: 875-883. doi: 10.1007/s00170-020-05094-3
    [20] YU H L, LIU X H, WANG G D. Behavior of transversal crack on slab corner during V-H rolling process[J]. Journal of Iron & Steel Research, International, 2006, 13(6): 31-37.
    [21] YU H L, LIU X H, WANG G D. Analysis of crack tip stress of transversal crack on slab corner during vertical-horizontal rolling process by FEM[J]. Journal of Iron & Steel Research, 2008(3): 22-29.
    [22] YU H L, LIU X H, LI C S, et al. Research on the behavior of transversal crack in slab V-H rolling process by FEM[J]. Journal of Materials Processing Technology, 2009, 209(6): 2876-2886. doi: 10.1016/j.jmatprotec.2008.06.045
    [23] YU H, TIEU A K, LU C, et al. Investigation of closure of internal cracks during rolling by FE model considering crack surface roughness[J]. International Journal of Advanced Manufacturing Technology, 2014, 75(9): 1633-1640.
    [24] ZHANG S, SONG B, WANG X, et al. Deduction of geometrical approximation yield criterion and its application[J]. Journal of Mechanical Science & Technology, 2014, 28(6): 2263-2271.
    [25] 章顺虎. 塑性成型力学原理[M]. 北京: 冶金工业出版社, 2016.
    [26] ZHANG S H, ZHAO D W, GAO C R. The calculation of roll torque and roll separating force for broadside rolling by stream function method[J]. International Journal of Mechanical Sciences, 2012, 57(1): 74-78. doi: 10.1016/j.ijmecsci.2012.02.006
  • 加载中
图(10)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  122
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 网络出版日期:  2022-06-08

目录

    /

    返回文章
    返回