Design of Digital Twin System for Blade Water Jet Surface Strengthening Process
-
摘要: 水射流表面强化是一种有效提升航空发动机叶片疲劳寿命的工艺方法。针对水射流表面强化装备和工艺系统还不具备对强化工艺的监测、检测、预测和决策的能力,将数字孪生技术引入到水射流表面强化工艺。首先根据水射流强化工艺原理,明确了水射流表面强化的数字孪生系统的框架;其次在实体层、模型层、数据层、应用层以及数据传输5个层面上完成了数字孪生系统的设计,实现了物理系统的强化装备和工艺的虚拟映射,以及各层级之间的连接和交互。应用实例表明,所构建的数字孪生系统能够实时监测强化设备的工作状态、检测强化后叶片的表面完整性、预测特定强化工艺下的强化效果,为强化工艺的选择和优化提供决策支持。Abstract: Water jet surface strengthening is an effective way to improve the fatigue life of aeroengine blades. In view of the fact that the water jet surface strengthening equipment and process system have no ability to monitor, detect, predict and make decisions on the strengthening process, the digital twin technology is introduced into the water jet surface strengthening process. Firstly, according to the principle of water jet strengthening technology, the framework of digital twin system for water jet surface strengthening was defined; Secondly, the design of the digital twin system was completed at the five levels of physical level, model level, data level, application level and data transmission level, which realized the virtual mapping of the strengthening equipment and process in the physical world, as well as the connection and interaction between all levels. The application case showed that the developed digital twin system had the ability to monitor the condition of the strengthening equipment in real time, detect the surface integrity of the strengthened blade, predict the strengthening effect under the specific strengthening process, and provide decision support for the selection and optimization of the strengthening process.
-
Key words:
- blade /
- water jet strengthening /
- surface integrity /
- fatigue life /
- digital twin
-
表 1 机械臂DH参数
Table 1. DH parameters of robotic arm
Link θ/rad d/m a/m α/rad 1 0 0 0.350 $ -{\text{π}} /2 $ 2 $ -{\text{π}} /2 $ 0 1.145 0 3 0 0 0.200 $ -{\text{π}} /2 $ 4 0 1.7765 0 $ {\text{π}} /2 $ 5 $ -{\text{π}} $ 0 0 $ {\text{π}} /2 $ 6 0 0.220 0 0 0 表 2 强化工艺参数
Table 2. Strengthening process parameters
Number Pressure/
MPaDistance/
mmTrack
interval/mmVelocity/
(mm·s−1)Angle/
(°)Particle type 1 60 10 0.10 7.5 90 1 2 60 10 0.10 10 90 1 3 70 10 0.10 12.5 90 1 4 80 10 0.15 12.5 90 1 5 80 10 0.15 10 90 1 6 80 10 0.15 7.5 90 1 7 100 10 0.05 8 90 2 8 140 10 0.05 5 90 2 9 180 10 0.05 5 90 2 10 100 10 0.05 12 90 2 11 100 10 0.10 5 90 2 12 100 10 0.15 5 90 2 表 3 表面完整性参数
Table 3. Surface integrity parameters
Number Ra/μm Sa/μm Hardness/(9.8 N·mm−2) Stress/MPa 1 0.683 2.544 411.72 −854.61 2 0.698 3.395 430.15 −927.39 3 0.643 2.706 411.15 −805.66 4 0.752 5.190 417.75 −785.92 5 0.702 3.489 415.39 −703.63 6 0.723 4.700 403.33 −651.45 7 0.425 0.854 428.74 −646.33 8 0.639 1.073 425.41 −695.84 9 1.063 1.837 447.03 −695.34 10 0.397 0.908 448.81 −661.42 11 0.574 0.999 439.03 −743.64 12 0.429 0.935 432.85 −756.21 表 4 训练模型的均方根误差对比
Table 4. Comparison among RMSE of the trained models
Model p/MPa Error/% RMSE Actual value Predictive value Original model 64.7595 −714.55 −775.4823 8.5 Model one 58.0266 −646.38 −699.6437 8.2 Model two 59.7569 −643.61 −697.2340 8.3 表 5 用户信息数据库表
Table 5. User information database table
Field name Type of data Defaults Primary key UserID Varchar(20) Null Yes UserName Varchar(10) Null No Password Varchar(20) Null No 表 6 工艺参数数据库表
Table 6. Process parameter database table
Field name Type of data Defaults Primary key Number Int Null Yes Pressure Double Null No Distance Double Null No Spacing Double Null No Velocity Double Null No Angle Double Null No Particle type Int Null No 表 7 表面完整性参数数据库表
Table 7. Surface integrity parameter database table
Field name Type of data Defaults Primary key Number Int Null Yes Stress Double Null No Roughness Double Null No Hardness Double Null No 表 8 强化过程中监测的工艺参数
Table 8. Process parameters monitored during strengthening
Time/s Distance/mm Velocity/(mm·s−1) Angle/(°) 4.4830 15.1 7.3 90 4.4870 15.1 7.2 90 4.4899 15.1 7.2 90 4.4928 15.0 7.2 90 4.4963 15.0 7.2 90 4.5002 15.0 7.2 90 表 9 强化过程中预测的表面完整性参数
Table 9. Predicted surface integrity parameters during strengthening
Time/s Stress/MPa Hardness/(9.8 N·mm−2) Ra/μm 4.4830 −712.4 412.9 −0.8764 4.4870 −712.4 412.9 −0.8768 4.4899 −712.4 412.9 −0.8772 4.4928 −712.4 412.9 −0.8765 4.4963 −712.4 412.9 −0.8773 4.5002 −712.4 412.9 −0.8768 -
[1] 王屹桢. 水射流喷丸强化3D打印钛合金材料表面关键技术研究[D]. 山东淄博: 山东理工大学, 2021. [2] 叶峰. 基于高压水射流的塑性金属表面强化研究[D]. 江苏无锡: 江南大学, 2020. [3] AZHARI A, SCHINDLER C, GODARD C, et al. Effect of multiple jet passes treatment in waterjet peening on fatigue performance[C]// the 1st International Conference on Applied Surface Science(ICASS 2015). Shanghai, China: [s.n.], 2015: 1-20. [4] 于勇, 范胜廷, 彭关伟, 等. 数字孪生模型在产品构型管理中应用探讨[J]. 航空制造技术, 2017(7): 41-45. doi: 10.16080/j.issn1671-833x.2017.07.041 [5] CHINESTA F, CUETO E, ABISSET-CHAVANNE E, et al. Virtual, digital and hybrid twins: A new paradigm in data-based engineering and engineered data[J]. Archives of Computational Methods in Engineering, 2020, 27: 105-134. doi: 10.1007/s11831-018-9301-4 [6] CHAPUIS F, BELEY J D, GARREAU S, et al. Multibody simulation and control of kinematic systems with FMI/FMU[C]// Proceedings of the 2nd Japanese Modelica Conference. Tokyo, Japan: Linköping University Electronic Press, 2019: 261-263. [7] SCHLEICH B, ANWER N, MATHIEU L, et al. Shaping the digital twin for design and production engineering[J]. CIRP Annals-Manufacturing Technology, 2017, 66(1): 141-144. doi: 10.1016/j.cirp.2017.04.040 [8] DING K, CHAN F T S, ZHANG X, et al. Defining a digital twin-based cyber-physical production system for autonomous manufacturing in smart shop floors[J]. International Journal of Production Research, 2019, 57(20): 6315-6334. doi: 10.1080/00207543.2019.1566661 [9] SUN X, BAO J, LI J, et al. A digital twin-driven approach for the assembly-commissioning of high precision products[J]. Robotics and Computer-Integrated Manufacturing. 2020, 61: 101839. [10] TAO F, SUI F, LIU A, et al. Digital twin-driven product design framework[J]. International Journal of Production Research. 2018, 57(12): 3935-3953. [11] 杨能俊. 基于数字孪生的离散制造车间自适应调度方法研究[D]. 南京: 南京航空航天大学, 2020. [12] 雷玉勇, 万霞. 高速水射流特种精密加工技术[J]. 精密制造与自动化, 2003(S1): 138-142. doi: 10.3969/j.issn.1009-962X.2003.z1.054 [13] 宗学妍. 基于数字孪生的车间作业仿真与监控系统的设计与实现[D]. 沈阳: 中国科学院大学(中国科学院沈阳计算技术研究所), 2021. [14] 黄祖广, 陶飞, 刘蔚然, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18. doi: 10.13196/j.cims.2019.01.001 [15] 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18. doi: 10.13196/j.cims.2018.01.001 -