高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

模糊群智能驱动的软件定义型传感网路由优化

杨昊晨 黄如

杨昊晨, 黄如. 模糊群智能驱动的软件定义型传感网路由优化[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220302001
引用本文: 杨昊晨, 黄如. 模糊群智能驱动的软件定义型传感网路由优化[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220302001
YANG Haochen, HUANG Ru. Routing Optimization Driven by Fuzzy Swarm Intelligence in Software-Defined Sensor Networks[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220302001
Citation: YANG Haochen, HUANG Ru. Routing Optimization Driven by Fuzzy Swarm Intelligence in Software-Defined Sensor Networks[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220302001

模糊群智能驱动的软件定义型传感网路由优化

doi: 10.14135/j.cnki.1006-3080.20220302001
基金项目: 国家自然科学基金(61673178,61922063);上海市自然科学基金(20ZR1413800)
详细信息
    作者简介:

    杨昊晨(1996—),男,江苏人,硕士生,主要研究方向为无线传感器网络。E-mail:y30180631@mail.ecust.edu.cn

    通讯作者:

    黄 如, E-mail:huangrabbit@ecust.edu.cn

  • 中图分类号: TN92

Routing Optimization Driven by Fuzzy Swarm Intelligence in Software-Defined Sensor Networks

  • 摘要: 无线传感器网络由于基础设施建设等固有因素,必须考虑网络资源有限和资源消耗不均匀的问题。基于群智能模糊控制,将模糊控制引入群智能人工蜂群路由协议,解决软件定义传感器网络下的多径路由规划寻优问题。基于无线传感器网络的软件定义网络(Software Defined Networking for Wireless Sensor Networks,SDN-WISE)架构和群智能算法,通过产生人工蜂群模拟蜜蜂采蜜的过程搜索最优链路。人工蜂群对不同数据传输链路进行调整,利用模糊逻辑判断区域状态,并通过生成适应度函数评价出价值最高的数据链路,产生一个优化路由解决方案。实验结果表明,与经典路由算法对比,本文机制采用SDN-WISE在松耦合的软件定义网络架构下,融合人工蜂群的代理自适应能力与模糊控制的容错逻辑,使得优化路由问题求解过程在能量管理、网络利用率、传输时延和数据包传达率上均有明显的优势。

     

  • 图  1  SDN-WISE的结构

    Figure  1.  Structure of the SDN-WISE

    图  2  FABCR路由系统结构

    Figure  2.  FABCR routing system structural

    图  3  食物源与传感器网络路由的映射

    Figure  3.  Mapping of food sources to sensor network routes

    图  4  链路初始化与邻域搜索

    Figure  4.  Link initialization and Neighborhood search

    图  5  模糊逻辑结构

    Figure  5.  Fuzzy logic structure

    图  6  群智能模糊模块控制曲面

    Figure  6.  Swarm intelligent fuzzy module control surface

    图  7  SD-WSN 300与800个节点分布图

    Figure  7.  Distribution of SD-WSN 300 and 800 nodes

    图  8  节点规模自适应算法性能对比

    Figure  8.  Comparison of performance of algorithms with adaption node number

    图  9  节点数量和通信距离变化下的平均链路长度

    Figure  9.  Average link length under the change of node number and communication distance

    图  10  通信距离自适应算法性能对比

    Figure  10.  Comparison of performance of algorithms with adaption communication distance

    图  11  智能体数量可调性算法性能对比

    Figure  11.  Comparison of performance of algorithms with tunable swarm size

    图  12  智能体数量可调性FABCR性能指标对比

    Figure  12.  Comparison of performance of FABCR with tunable swarm size

    图  13  隶属函数可变性算法性能指标对比

    Figure  13.  Comparison of performance of algorithms with variable membership function

    图  14  隶属函数可变性FABCR性能指标对比

    Figure  14.  Comparison of performance of FABCR with variable membership function

    表  1  SDN流表内容

    Table  1.   SDN flow table content

    Match rule 1operationMatch rule 2operationMatch rule 3Action Statistic
    TypeValue TTLCounter
    Sink node=1&&Source node=15&&Current node=6ForwardNode 1 122
    Sink node=1&&Source node=20&&Current node=7FowardNode 2 103
    Neighbour node=0||Buffer=10//Drop 86
    Energy vulnerability<5Time vulnerability>8Space vulnerability>20SetReport 93
    下载: 导出CSV

    表  2  模糊控制规则库核心内容

    Table  2.   Core content of the fuzzy control rule base

    RuleEnergy vulnerabilityTime vulnerabilitySpace vulnerabilityArea vulnerability
    1HighHighHighVery High
    2HighLowLowLow
    3LowMediumHighMedium
    4LowHighHighHigh
    5LowLowLowVery low
    下载: 导出CSV

    表  3  实验参数

    Table  3.   Experiment parameters

    SDNSwarm IntelligenceFuzzy control
    ParameterValueParameterValueParameterValue
    Number of network nodes300—800Swarm size10Number of fuzzy rules27
    Network size100 m*100 mFood source abandonment criteria50 cyclesFuzzy membership functionTriangle-shape
    SDN Controller position(50,50)Search termination criteria250 cyclesFuzzy output space partition number5
    SDN Collection packet size14 ByteField scale1Fuzzy input space partition number3
    Communication range7—12 mNumber of fitness function parameters3Fuzzy Inference SystemsMamdani
    Node initial energy10 JDimension of the solution[5,12]Defuzzification methodCentroid
    Data packet size12 ByteEnergy parameter range[0,10]Fuzzy rule connectionAnd
    Node buffer size128 ByteCongestion parameter range[0,10]Energy vulnerability range[0,10]
    Number of data packet800Link parameter range[5,12]Time vulnerability range[0,10]
    Buffer typeDrop tailVulnerable parameter range[0,10]Space vulnerability range[0,50]
    下载: 导出CSV
  • [1] JINO RAMSON S R, MONI D J. Applications of wireless sensor networks: A survey[C]//2017 International Conference on Innovations in Electrical, Electronics, Instrumentation and Media Technology (ICEEIMT). 2017: 325-329
    [2] MOHAMED R E, SALEH A I, ABDELRAZZAK M, et al. Survey on wireless sensor network applications and energy efficient routing protocols[J]. Wireless Personal Communications, 2018, 101(2): 1019-1055. doi: 10.1007/s11277-018-5747-9
    [3] WANG J, GAO Y, LIU W, et al. An improved routing schema with special clustering using PSO algorithm for heterogeneous wireless sensor network[J]. Sensors, 2019, 19(3): 1-17. doi: 10.1109/JSEN.2018.2879242
    [4] BONANNI M, CHITI F, FANTACCI R, et al. Dynamic control architecture based on software defined networking for the internet of things[J]. Future Internet, 2021, 13(5): 1-15.
    [5] NDIAYE M, HANCKE G P, ABU-MAHFOUZ A M. Software defined networking for improved wireless sensor network management: A survey[J]. sensors, 2017, 17(5): 1-32. doi: 10.1109/JSEN.2017.2655998
    [6] ALVES R C A, OLIVEIRA D A G, NUNEZ SEGURA G A, et al. The cost of software-defining things: A scalability study of software-defined sensor networks[J]. IEEE Access, 2019, 7: 115093-115108. doi: 10.1109/ACCESS.2019.2936127
    [7] BISWAS A, MISHRA K K, TIWARI S, et al. Physics-inspired optimization algorithms: A survey[J]. Journal of Optimization, 2013, 2013: 1-16.
    [8] MASOOD M, FOUAD M M, SEYEDZADEH S, et al. Energy efficient software defined networking algorithm for wireless sensor networks[J]. Transportation Research Procedia, 2019, 40: 1481-1488. doi: 10.1016/j.trpro.2019.07.205
    [9] GALLUCCIO L, MILARDO S, MORABITO G, et al. SDN-WISE: Design, prototyping and experimentation of a stateful SDN solution for wireless sensor networks[C]//2015 IEEE Conference on Computer Communications (INFOCOM). 2015: 513-521
    [10] ABDOLMALEKI N, AHMADI M, MALAZI H T, et al. Fuzzy topology discovery protocol for SDN-based wireless sensor networks[J]. Simulation Modelling Practice and Theory, 2017, 79: 54-68. doi: 10.1016/j.simpat.2017.09.004
    [11] ZHENG W, LUO D. Routing in wireless sensor network using artificial bee colony algorithm[C]//2014 International Conference on Wireless Communication and Sensor Network. 2014: 280-284
    [12] AMIRI E, KESHAVARZ H, ALIZADEH M, et al. Energy efficient routing in wireless sensor networks based on fuzzy ant colony optimization[J]. International Journal of Distributed Sensor Networks, 2014, 10(7): 1-17.
    [13] RAGAVAN P S, RAMASAMY K. Optimized routing in wireless sensor networks by establishing dynamic topologies based on genetic algorithm[J]. Cluster Computing, 2019, 22(5): 12119-12125.
    [14] SAMPATHKUMAR A, MULERIKKAL J, SIVARAM M. Glowworm swarm optimization for effectual load balancing and routing strategies in wireless sensor networks[J]. Wireless Networks, 2020, 26(6): 4227-4238. doi: 10.1007/s11276-020-02336-w
    [15] ZOU Z, QIAN Y. Wireless sensor network routing method based on improved ant colony algorithm[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3): 991-998. doi: 10.1007/s12652-018-0751-1
    [16] GALLUCCIO L, MILARDO S, MORABITO G, et al. Reprogramming wireless sensor networks by using SDN-WISE: A hands-on demo[C]//2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). 2015: 19-20
    [17] MOSTAFAEI H, MENTH M. Software-defined wireless sensor networks: A survey[J]. Journal of Network and Computer Applications, 2018, 119: 42-56. doi: 10.1016/j.jnca.2018.06.016
    [18] KOBO H I, ABU-MAHFOUZ A M, HANCKE G P. A survey on software-defined wireless sensor networks: Challenges and design requirements[J]. IEEE Access, 2017, 5: 1872-1899. doi: 10.1109/ACCESS.2017.2666200
    [19] AKBARI R, HEDAYATZADEH R, ZIARATI K, et al. A multi-objective artificial bee colony algorithm[J]. Swarm and Evolutionary Computation, 2012, 2: 39-52. doi: 10.1016/j.swevo.2011.08.001
    [20] KARABOGA D, AKAY B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1): 108-132. doi: 10.1016/j.amc.2009.03.090
    [21] KARABOGA D, BASTURK B. On the performance of artificial bee colony (ABC) algorithm[J]. Applied Soft Computing, 2008, 8(1): 687-697. doi: 10.1016/j.asoc.2007.05.007
    [22] CAI X, DUAN Y, HE Y, et al. Bee-Sensor-C: An energy-efficient and scalable multipath routing protocol for wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2015, 11(3): 1-14.
    [23] 宁爱平, 张雪英. 人工蜂群算法的收敛性分析[J]. 控制与决策. 2013, 28(10): 1554-1558.
    [24] BOHLOULZADEH A, RAJAEI M. A survey on congestion control protocols in wireless sensor networks[J]. International Journal of Wireless Information Networks, 2020, 27(3): 365-384. doi: 10.1007/s10776-020-00479-3
    [25] BARADARAN A A, NAVI K. HQCA-WSN: High-quality clustering algorithm and optimal cluster head selection using fuzzy logic in wireless sensor networks[J]. Fuzzy Sets and Systems, 2020, 389: 114-144. doi: 10.1016/j.fss.2019.11.015
    [26] DUTT S, AGRAWAL S, VIG R. Delay-sensitive, reliable, energy-efficient, adaptive and mobility-aware (dream) routing protocol for WSNs[J]. Wireless Personal Communications, 2021, 120(2): 1675-1703. doi: 10.1007/s11277-021-08528-7
    [27] KAUR T, KUMAR D. MACO-QCR: Multi-objective aco-based qos-aware cross-layer routing protocols in WSN[J]. IEEE Sensors Journal, 2021, 21(5): 6775-6783. doi: 10.1109/JSEN.2020.3038241
    [28] AGARKHED J, KADROLLI V, PATIL S. Fuzzy based multi-level multi-constraint multi-path reliable routing in wireless sensor network[J]. International Journal of Information Technology, 2020, 12(4): 1133-1146. doi: 10.1007/s41870-020-00476-y
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  108
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-02
  • 网络出版日期:  2022-05-13

目录

    /

    返回文章
    返回