An event-triggered distributed positioning method of a heterogeneous WSN
-
摘要: 由于电磁波传输的多径效应和信号干扰,基于接收信号强度(RSS)测距的室内定位精度较低,本文提出一种融合RSS和惯性测量的异构无线传感器网络(WSN)室内定位方案,它是采用基于位置估计信任度的分布式一致性容积信息滤波算法来协同估计目标的位置。引入事件触发机制,基于RSS信号强度触发WSN节点唤醒,以提高网络的抗干扰性和降低网络能耗。室内移动小车的定位仿真和实验测试结果表明,所提出的WSN融合定位精度明显优于单一定位方法,具有显著的抗干扰性能,且分布式定位和事件触发机制可有效地降低网络能耗。Abstract: Due to multi-path effect and electromagnetic interference, RSS-based indoor positioning systems has lower accuracy. Aiming at this shortcoming, this paper proposes an indoor positioning scheme of a heterogeneous wireless sensor network (WSN) by integrating the RSS and inertial measurement. The distributed consensus cubature information filters with credibility evaluation is utilized to estimate target positions collaboratively. An event triggering mechanism is introduced to awaken the sensor nodes when the strength of RSS signals are satisfied for improving the network anti-interference and reduce network energy consumption. It is shown from the simulation and experiment results via mobile cars that the proposed method has higher positioning accuracy than and a single positioning method, and remarkable anti-interference performance. Moreover, the distributed positioning scheme and event-triggering mechanism can effectively reduce network energy consumption.
-
表 1 算法在各种电磁干扰环境下的定位误差
Table 1. Positioning error of the algorithm in various electromagnetic interference environments
MAE/m RMSE/m Average Maximum Average Maximum DC interference 0.264 0.917 0.270 0.935 AC interference 0.250 0.902 0.253 0.912 Random noise
interference0.298 1.076 0.315 1.104 -
[1] CHOWDHURY T J S, ELKIN C, DEVABHAKTUNI V, et al. Advances on localization techniques for wireless sensor networks: A survey[J]. Computer networks, 2016, 110(12): 284-305. [2] 姚楚阳, 刘爽. 一种可升降式变电站室内巡检机器人控制系统设计[J]. 华东理工大学学报(自然科学版), 2021, 47(1): 116-122. [3] LV Y, LIU W, WANG Z, et al. WSN localization technology based on hybrid GA-PSO-BP algorithm for indoor three-dimensional space[J]. Wireless Personal Communications, 2020, 114(2): 167-184. [4] MOTTER P, ALLGAYER R S, MULLER I, et al. Practical issues in wireless sensor network localization systems using received signal strength indication[C]// Sensors Applications Symposium. IEEE, 2011: 22-24. [5] WANG X, BISCHOFF O, LAUR R, et al. Localization in wireless Ad-hoc sensor networks using multilateration with RSSI for logistic applications[J]. Procedia Chemistry, 2009, 1(1): 461-464. doi: 10.1016/j.proche.2009.07.115 [6] BIANCHI V, CIAMPOLINI P, MUNARI I D. RSSI-Based indoor localization and identification for ZigBee wireless sensor networks in smart homes[J]. Instrumentation & Measurement IEEE Transactions on, 2019, 68(2): 566-575. [7] 付凤婷, 褚振忠, 朱大奇. 基于迭代无迹卡尔曼滤波的水下组合导航[J]. 华东理工大学学报(自然科学版), 2021, 47(2): 247-254. [8] XIONG H, PENG M, GONG S, et al. A novel hybrid RSS and TOA positioning algorithm for multi-objective cooperative wireless sensor networks[J]. IEEE Sensors Journal, 2018, 18(22): 9343-9351. doi: 10.1109/JSEN.2018.2869762 [9] YANG H, LI W, LUO C M. Fuzzy adaptive kalman filter for indoor mobile target positioning with INS/WSN integrated method[J]. Journal of Central South University, 2015, 22(4): 1324-1333. doi: 10.1007/s11771-015-2649-9 [10] HIGHTOWER J, BORRIELLO G. A survey and taxonomy of location systems for ubiquitous computing[J]. Technical Report, 2019, 26(8): 2281-2294. [11] REZA O S R, SHAMMA J S. Consensus filters for sensor networks and distributed sensor fusion[C]// IEEE Conference on Decision & Control. IEEE, 2005: 6698-6703. [12] KAI S, JING Z, PENG D. A consensus nonlinear filter with measurement uncertainty in distributed sensor networks[J]. IEEE Signal Processing Letters, 2017, 24(11): 1631-1635. doi: 10.1109/LSP.2017.2751611 [13] DEMETRIOU M A. Design of consensus and adaptive consensus filters for distributed parameter systems[J]. Automatica, 2010, 46(2): 300-311. doi: 10.1016/j.automatica.2009.11.015 [14] LIU J, SHAO Q, HUA C. Consensus-based cubature information filtering for sensor networks with incomplete measurements[J]. Neurocomputing, 2019, 364(28): 49-62. [15] HU J, WANG Z, ALSAADI F E, et al. Event-based filtering for time-varying nonlinear systems subject to multiple missing measurements with uncertain missing probabilities[J]. Information Fusion, 2017, 38(9): 74-83. [16] ZHANG W, WANG Z, LIU Y, et al. Event-based state estimation for a class of complex networks with time-varying delays: A comparison principle approach[J]. Physics Letters A, 2017, 381(1): 10-18. doi: 10.1016/j.physleta.2016.10.002 [17] XIN L, YAN W, KHOSHELHAM K. A robust and adaptive complementary kalman filter based on mahalanobis distance for ultra wideband/inertial measurement unit fusion positioning[J]. Sensors, 2018, 18(10): 3435-3456. doi: 10.3390/s18103435 [18] CHEN Q, WANG W, YIN C, et al. Distributed cubature information filtering based on weighted average consensus[J]. Neurocomputing, 2017, 243(21): 115-124. [19] 丁家琳, 肖建, 张勇. 基于CKF的分布式滤波算法及其在目标跟踪中的应用[J]. 控制与决策, 2015, 30(2): 296-302. [20] CHEN Q, YIN C, ZHOU J, et al. Hybrid consensus-based cubature kalman filtering for distributed state estimation in sensor networks[J]. IEEE Sensors Journal, 2018, 18(11): 4561-4569. doi: 10.1109/JSEN.2018.2823908 [21] REN Z, WANG G, CHEN Q, et al. Modelling and simulation of rayleigh fading, path loss, and shadowing fading for wireless mobile networks[J]. Simulation Modelling Practice & Theory, 2011, 19(2): 626-637. -