高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

FCC油浆中固体颗粒沉降特性与沉降速度模型

肖之敏 熊鹰 周晓龙

肖之敏, 熊鹰, 周晓龙. FCC油浆中固体颗粒沉降特性与沉降速度模型[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220208001
引用本文: 肖之敏, 熊鹰, 周晓龙. FCC油浆中固体颗粒沉降特性与沉降速度模型[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220208001
XIAO Zhimin, XIONG Ying, ZHOU Xiaolong. Settlement Characteristics and Settlement Velocity Model of Solid Particles in FCC Slurry[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220208001
Citation: XIAO Zhimin, XIONG Ying, ZHOU Xiaolong. Settlement Characteristics and Settlement Velocity Model of Solid Particles in FCC Slurry[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220208001

FCC油浆中固体颗粒沉降特性与沉降速度模型

doi: 10.14135/j.cnki.1006-3080.20220208001
详细信息
    作者简介:

    肖之敏(1995 -),女,江苏镇江人,硕士生,研究方向为油气储运工程,double8021@163.com

    通讯作者:

    周晓龙,E-mail:xiaolong@ecust.edu.cn

  • 中图分类号: TE62

Settlement Characteristics and Settlement Velocity Model of Solid Particles in FCC Slurry

  • 摘要: 脱除催化裂化油浆中的固体颗粒可以显著提高油浆的价值,沉降脱固是有效的手段之一。影响油浆中固体颗粒沉降的主要因素包括油浆体系的黏度、油浆与固体颗粒密度差和固体的颗粒度,采用添加石油醚溶剂油和改变体系温度的方法调节油浆液固体系的黏度和密度差,用重复深度吸管法实验计算颗粒沉降速度,探索得到了沉降过程中油浆物性变化和不同粒径固体颗粒沉降的规律,关联得到了油浆中固体颗粒沉降速度经验公式,建立了油浆中固体颗粒的沉降模型,模型计算结果与实验结果的误差在10%以内。研究结果可为优化油浆沉降脱固工艺提供支持。

     

  • 图  1  不同石油醚加入量不同取样处颗粒浓度随时间的变化

    Figure  1.  Change of particle concentration with settling time for different sampling height and different petroleum ether ratio

    图  2  不同石油醚加入量油浆底层颗粒浓度随时间的变化

    Figure  2.  Change of down particle concentration with settling time for different petroleum ether ratio

    图  3  不同石油醚加入量不同取样处颗粒沉降速度随时间的变化

    Figure  3.  Change of settling velocity with settling time for different sampling height and different petroleum ether contents

    图  4  固体颗粒CD-Rep曲线

    Figure  4.  CD-Rep curve of solid particle

    图  5  沉降速度与粒径的关系曲线

    Figure  5.  Relation between settling velocity and particle size with 20% petroleum ether

    表  1  实验油浆基本性质

    Table  1.   Properties of FCC slurry

    ρ(20 ℃) (g·cm−3)μ(150 ℃)/(mPa·s)Ash/ppmw (C)/%w (H)/%w (N)/%w (S)/%w (Saturate)/%w (Aromatic)/%w (Resin and asphaltene)/%
    1.056476.8379390.838.180.180.3515.869.314.9
    下载: 导出CSV

    表  2  阻力系数计算所需参数

    Table  2.   Parameters required for drag coefficient calculation

    Time/minLayer10% petroleum ether ratio20% petroleum ether ratio30% petroleum ether ratio
    ρ
    /(g·cm-3)
    μ
    /(Pa·s)
    D./μm
    ρ
    /(g·cm-3)
    μ
    /(Pa·s)
    D./μm
    ρ
    /(g·cm-3)
    μ
    /(Pa·s)
    D./μm
    30 Upper 0.9451 0.0289 27.4 0.9384 0.0181 25.7 0.9203 0.0104 22.3
    Middle 0.9457 0.0283 28.2 0.9391 0.0186 26.9 0.9212 0.0107 24.9
    Lower 0.9469 0.0297 28.7 0.9403 0.0188 27.6 0.9215 0.0108 25.4
    Down 0.9489 0.0309 30.5 0.9409 0.0207 33.6 0.9351 0.0161 35.3
    60 Upper 0.9388 0.0278 25.4 0.9374 0.0172 22.8 0.9157 0.0101 19.6
    Middle 0.9411 0.0264 25.7 0.9379 0.0183 24.9 0.9193 0.0104 21.8
    Lower 0.9444 0.0263 28.1 0.9387 0.0185 26.5 0.9216 0.0105 24.9
    Down 0.9493 0.0313 31.7 0.9417 0.0218 36.2 0.9383 0.0165 37.4
    90 Upper 0.9326 0.0225 20.5 0.9209 0.0164 17.7 0.9022 0.0098 14.6
    Middle 0.9334 0.0241 22.8 0.9234 0.0166 19.7 0.9044 0.0100 18.2
    Lower 0.9378 0.0221 27.2 0.9328 0.0173 25.2 0.9113 0.0106 23.6
    Down 0.9516 0.0322 34.0 0.9426 0.0232 37.2 0.9389 0.0179 38.1
    120 Upper 0.9281 0.0217 13.6 0.9111 0.0133 11.3 0.8916 0.0076 7.7
    Middle 0.9277 0.021 17.2 0.9137 0.0137 15.2 0.8942 0.0092 14.3
    Lower 0.9321 0.0225 23.5 0.9231 0.0155 21.2 0.9048 0.0098 19.1
    Down 0.9607 0.0334 37.4 0.9487 0.0251 40.1 0.9408 0.0191 41.0
    150 Upper 0.9244 0.0213 12.1 0.9102 0.126 9.7 0.8918 0.0073 6.8
    Middle 0.9279 0.0227 16 0.9174 0.138 12.7 0.8937 0.0084 12.7
    Lower 0.9323 0.0228 22.7 0.9203 0.143 20.7 0.9033 0.0094 17.4
    Down 0.9633 0.0338 37.2 0.9494 0.272 41.3 0.9413 0.0198 41.2
    下载: 导出CSV

    表  3  实验速度与沉降模型计算的油浆中固体颗粒速度对比

    Table  3.   Comparison of calculated and experimental settlement velocity of particles in slurry

    Time
    /min
    LayerSettlement Velocity/(mm·s−1)
    10% petroleum ether ratio20% petroleum ether ratio30% petroleum ether ratio
    Experimental valueCalculated valueExperimental valueCalculated valueExperimental valueCalculated value
    30 Upper 0.00133 0.00119 0.00184 0.00171 0.00262 0.00248
    Middle 0.00141 0.00129 0.00195 0.00181 0.00301 0.00297
    Lower 0.00143 0.00125 0.00204 0.00187 0.00331 0.00306
    Down 0.00143 0.00133 0.00255 0.00249 0.00395 0.00363
    60 Upper 0.00123 0.00110 0.00156 0.00143 0.00220 0.00204
    Middle 0.00130 0.00117 0.00172 0.00160 0.00261 0.00239
    Lower 0.00148 0.00136 0.00195 0.00177 0.00305 0.00302
    Down 0.00151 0.00141 0.00280 0.00272 0.00412 0.00388
    90 Upper 0.00104 0.00095 0.00110 0.00102 0.00137 0.00128
    Middle 0.00118 0.00106 0.00135 0.00122 0.00183 0.00190
    Lower 0.00152 0.00158 0.00172 0.00178 0.00263 0.00286
    Down 0.00166 0.00154 0.00252 0.00269 0.00341 0.00371
    120 Upper 0.00050 0.00045 0.00060 0.00055 0.00055 0.00051
    Middle 0.00082 0.00073 0.00107 0.00094 0.00154 0.00137
    Lower 0.00134 0.00122 0.00157 0.00151 0.00225 0.00212
    Down 0.00159 0.00159 0.00230 0.00276 0.00327 0.00357
    150 Upper 0.00049 0.00037 0.00050 0.00043 0.00046 0.00042
    Middle 0.00064 0.00059 0.00070 0.00064 0.00124 0.00118
    Lower 0.00122 0.00112 0.00155 0.00158 0.00175 0.00186
    Down 0.00141 0.00160 0.00190 0.00267 0.00257 0.00285
    下载: 导出CSV

    表  4  20%石油醚加入后不同沉降时间、不同取样层颗粒粒径分布

    Table  4.   Particle size distribution in different settling time and sampling height with 20% petroleum ether

    Time/minLayerParticle size distribution /%
    <20 μm20~40 μm40~60 μm>60 μm
    30Upper44.233.314.34.2
    Middle41.737.014.86.5
    Lower39.627.018.215.3
    Down37.421.725.215.7
    60Upper49.536.210.83.4
    Middle43.138.712.95.3
    Lower43.224.117.814.9
    Down32.024.626.516.9
    90Upper74.816.98.10.2
    Middle66.725.82.64.9
    Lower43.424.817.314.5
    Down29.525.027.717.5
    120Upper81.416.52.10
    Middle69.924.52.23.4
    Lower52.923.114.39.7
    Down26.326.328.718.7
    150Upper91.78.300
    Middle71.125.80.82.3
    Lower54.722.512.99.9
    Down27.425.729.017.9
    下载: 导出CSV
  • [1] 赵晓隆, 李会鹏, 赵华, 等. 两种催化油浆的热重反应动力学研究[J]. 石油与天然气化工, 2014, 43(4): 357-361. doi: 10.3969/j.issn.1007-3426.2014.04.003
    [2] 陈静, 周晓龙, 金鸣林, 等. FCC油浆热转化制备中间相沥青的研究[J]. 华东理工大学学报(自然科学版), 2007, 33(2): 14-18.
    [3] CHEN K, ZHANG D, DAI Y, et al. Chemical and structural characterization of problematic suspended particles enriched from fluidized catalytic cracking slurry oil[J]. Chemical Engineering Research and Design, 2019, 143: 36-46. doi: 10.1016/j.cherd.2019.01.007
    [4] SONG X, LIU D, LOU B, et al. Removal of catalyst particles from fluid catalytic cracking slurry oil by the simultaneous addition of a flocculants and a weighting agent[J]. Chemical Engineering Research and Design, 2018, 132: 686-696. doi: 10.1016/j.cherd.2018.02.016
    [5] JIAO S, GUO A, WANG F, et al. Sequential pretreatments of an FCC slurry oil sample for preparation of feedstocks for high-value solid carbon materials[J]. Fuel, 2021, 285: 119169. doi: 10.1016/j.fuel.2020.119169
    [6] 吴洪波, 文婕, 张连红, 等. 催化裂化油浆的净化以及综合利用生产高附加值产品[J]. 应用化工, 2020, 49(10): 2618-2624,2635. doi: 10.3969/j.issn.1671-3206.2020.10.047
    [7] CUI L, CHEN H, XU J, et al. Chemical modification process of heavy residue from FCC slurry oil for producing high-grade paving asphalt[J]. Fuel, 2020, 265: 117002. doi: 10.1016/j.fuel.2019.117002
    [8] 郭爱军, 靳正正, 龚黎明, 等. 助剂辅助催化裂化油浆离心-静电组合脱固工艺[J]. 化工进展, 2019, 38(07): 3126-3135.
    [9] 吕涯, 尹玖黎. 催化裂化油浆液固分离技术研究[J]. 石化技术, 2009, 16(03): 53-57. doi: 10.3969/j.issn.1006-0235.2009.03.016
    [10] 严生虎, 钱杰, 王哲明, 等. PTA废水的沉降模型分析、验证与应用[J]. 南京工业大学学报(自然科学版), 2012, 34(01): 91-94.
    [11] MCLAUGHLIN R T. The Settling Properties of Suspensions[J]. American Society of Civil Engineers, 1961, 85(12): 9-41.
    [12] 桂福坤, 方帅, 曲晓玉, 等. 舟山近海海域养殖水体悬浮物沉降特性试验研究[J]. 农业工程学报, 2020, 36(10): 206-212. doi: 10.11975/j.issn.1002-6819.2020.10.025
    [13] FATHI-MOGHADAM M, ARMAN A N, EMAMGHOLIZADEH S, et al. Settling Properties of Cohesive Sediments in Lakes and Reservoirs[J]. Journal of Waterway Port Coastal & Ocean Engineering, 2011, 137(4): 204-209.
    [14] 孙晓峰, 纪国栋, 冯松林, 等. 幂律流体中岩屑颗粒沉降速度实验[J]. 断块油气田, 2016, 23(01): 120-124.
    [15] STOKES G G. Mathematical and physical papers[M]. New York: Cambridge University Press, 2009.
    [16] 张亮, 张玉明, 张浩然, 等. 催化裂化油浆固含量测定及组成分析[J]. 化工进展, 2019, 38(09): 4052-4059.
    [17] CAMENEN B. Simple and General Formula for the Settling Velocity of Particles[J]. Journal of Hydraulic Engineering, 2007, 133(2): 229-233. doi: 10.1061/(ASCE)0733-9429(2007)133:2(229)
    [18] VERJUS R, GUILLOU S, EZERSKY A, et al. Chaotic sedimentation of particle pairs in a vertical channel at low Reynolds number: Multiple states and routes to chaos[J]. Physics of Fluids, 2016, 28(12): 123303. doi: 10.1063/1.4968559
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  23
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-08
  • 网络出版日期:  2022-06-10

目录

    /

    返回文章
    返回