Settlement Characteristics and Settlement Velocity Model of Solid Particles in FCC Slurry
-
摘要: 脱除催化裂化(FCC)油浆中的固体颗粒可以显著提高油浆的价值,沉降脱固是有效的手段之一。影响油浆中固体颗粒沉降的主要因素包括油浆体系的黏度、油浆与固体颗粒密度差和固体的颗粒度,采用添加石油醚溶剂油和改变体系温度的方法调节油浆液固体系的黏度和密度差,用重复深度吸管法计算颗粒沉降速度,得到了沉降过程中油浆物性变化和不同粒径固体颗粒沉降的规律,关联得到了油浆中固体颗粒沉降速度经验公式,建立了油浆中固体颗粒的沉降模型,模型计算结果与实验结果的误差在10%以内。研究结果可为优化油浆沉降脱固工艺提供支持。Abstract: FCC slurry oil, rich in polycyclic aromatic hydrocarbons, is an ideal raw material of high value-added petroleum products such as carbon fiber, needle coke and carbon black. However, their uses are limited by the interior solid particles. The removal of particles in slurry oil is essential to improve its applicability. The viscosity of the slurry, density difference between the slurry and particle, and particle size are the key factors to influence the sedimentation of solid particles in slurry oil. Here, the effect of the addition of petroleum ether and sedimentation temperature were tested to optimize the viscosity of the slurry and density difference. The McLaughlin method was applied to calculate the settlement velocity in the slurry oil in the settlement experiments. The characteristics change of slurry oil and the sedimentation laws of particles of different sizes were analyzed to obtain a settlement velocity model. The results showed that the error between experiment and model method was within 10%. It was also suggested that the sedimentation temperature and the loading amount of petroleum ether significantly affected the viscosity of the slurry oil as well as the settlement behavior. As the viscosity decreased, the particle settling speed increased. In addition, the sedimentation laws of particles of different sizes were dramatically different. The sedimentation rate of the particles with a diameter larger than 40 μm was significantly influenced by the process conditions, while that for smaller particles with a diameter below 20 μm was relatively less influenced. This study offers insight into improving the separation efficiency of solid particles during FCC slurry settlement process.
-
表 1 FCC油浆基本性质
Table 1. Properties of FCC slurry
ρ(20 ℃)/(g·cm−3) μ(150 ℃)/(mPa·s) w(Ash)/% w/% C H N S Saturate Aromatic Resin and asphaltene 1.0564 76.8 0.3793 90.83 8.18 0.18 0.35 15.8 69.3 14.9 表 2 阻力系数计算所需参数
Table 2. Parameters required for drag coefficient calculation
Time/min Layer w(Petroleum ether)=10% w(Petroleum ether)=20% w(Petroleum ether)=30% ρ/(g·cm−3) μ/(Pa·s) dp/μm ρ/(g·cm−3) μ/(Pa·s) dp/μm ρ/(g·cm−3) μ/(Pa·s) dp/μm 30 Upper 0.9451 0.0289 27.4 0.9384 0.0181 25.7 0.9203 0.0104 22.3 Middle 0.9457 0.0283 28.2 0.9391 0.0186 26.9 0.9212 0.0107 24.9 Lower-middle 0.9469 0.0297 28.7 0.9403 0.0188 27.6 0.9215 0.0108 25.4 Down 0.9489 0.0309 30.5 0.9409 0.0207 33.6 0.9351 0.0161 35.3 60 Upper 0.9388 0.0278 25.4 0.9374 0.0172 22.8 0.9157 0.0101 19.6 Middle 0.9411 0.0264 25.7 0.9379 0.0183 24.9 0.9193 0.0104 21.8 Lower-middle 0.9444 0.0263 28.1 0.9387 0.0185 26.5 0.9216 0.0105 24.9 Down 0.9493 0.0313 31.7 0.9417 0.0218 36.2 0.9383 0.0165 37.4 90 Upper 0.9326 0.0225 20.5 0.9209 0.0164 17.7 0.9022 0.0098 14.6 Middle 0.9334 0.0241 22.8 0.9234 0.0166 19.7 0.9044 0.0100 18.2 Lower-middle 0.9378 0.0221 27.2 0.9328 0.0173 25.2 0.9113 0.0106 23.6 Down 0.9516 0.0322 34.0 0.9426 0.0232 37.2 0.9389 0.0179 38.1 120 Upper 0.9281 0.0217 13.6 0.9111 0.0133 11.3 0.8916 0.0076 7.7 Middle 0.9277 0.021 17.2 0.9137 0.0137 15.2 0.8942 0.0092 14.3 Lower-middle 0.9321 0.0225 23.5 0.9231 0.0155 21.2 0.9048 0.0098 19.1 Down 0.9607 0.0334 37.4 0.9487 0.0251 40.1 0.9408 0.0191 41.0 150 Upper 0.9244 0.0213 12.1 0.9102 0.126 9.7 0.8918 0.0073 6.8 Middle 0.9279 0.0227 16.0 0.9174 0.138 12.7 0.8937 0.0084 12.7 Lower-middle 0.9323 0.0228 22.7 0.9203 0.143 20.7 0.9033 0.0094 17.4 Down 0.9633 0.0338 37.2 0.9494 0.272 41.3 0.9413 0.0198 41.2 表 3 油浆中固体颗粒沉降速度实验值与计算值对比
Table 3. Comparison of calculated and experimental settlement velocity of solid particles in slurry
Time/min Layer Settlement velocity/(mm·s−1) w(Petroleum ether)=10% w(Petroleum ether)=20% w(Petroleum ether)=30% Experimental value Calculated value Experimental value Calculated value Experimental value Calculated value 30 Upper 0.00133 0.00119 0.00184 0.00171 0.00262 0.00248 Middle 0.00141 0.00129 0.00195 0.00181 0.00301 0.00297 Lower-middle 0.00143 0.00125 0.00204 0.00187 0.00331 0.00306 Down 0.00143 0.00133 0.00255 0.00249 0.00395 0.00363 60 Upper 0.00123 0.00110 0.00156 0.00143 0.00220 0.00204 Middle 0.00130 0.00117 0.00172 0.00160 0.00261 0.00239 Lower-middle 0.00148 0.00136 0.00195 0.00177 0.00305 0.00302 Down 0.00151 0.00141 0.00280 0.00272 0.00412 0.00388 90 Upper 0.00104 0.00095 0.00110 0.00102 0.00137 0.00128 Middle 0.00118 0.00106 0.00135 0.00122 0.00183 0.00190 Lower-middle 0.00152 0.00158 0.00172 0.00178 0.00263 0.00286 Down 0.00166 0.00154 0.00252 0.00269 0.00341 0.00371 120 Upper 0.00050 0.00045 0.00060 0.00055 0.00055 0.00051 Middle 0.00082 0.00073 0.00107 0.00094 0.00154 0.00137 Lower-middle 0.00134 0.00122 0.00157 0.00151 0.00225 0.00212 Down 0.00159 0.00159 0.00230 0.00276 0.00327 0.00357 150 Upper 0.00049 0.00037 0.00050 0.00043 0.00046 0.00042 Middle 0.00064 0.00059 0.00070 0.00064 0.00124 0.00118 Lower-middle 0.00122 0.00112 0.00155 0.00158 0.00175 0.00186 Down 0.00141 0.00160 0.00190 0.00267 0.00257 0.00285 表 4 质量分数为20%的石油醚加入后不同沉降时间、不同取样层颗粒粒径分布
Table 4. Particle distribution in different settling time and sampling height with w=20% petroleum ether
Time/min Layer Particle distribution/% <20 μm 20~40 μm 40~60 μm >60 μm 30 Upper 44.2 33.3 14.3 4.2 Middle 41.7 37.0 14.8 6.5 Lower-middle 39.6 27.0 18.2 15.3 Down 37.4 21.7 25.2 15.7 60 Upper 49.5 36.2 10.8 3.4 Middle 43.1 38.7 12.9 5.3 Lower-middle 43.2 24.1 17.8 14.9 Down 32.0 24.6 26.5 16.9 90 Upper 74.8 16.9 8.1 0.2 Middle 66.7 25.8 2.6 4.9 Lower-middle 43.4 24.8 17.3 14.5 Down 29.5 25.0 27.7 17.5 120 Upper 81.4 16.5 2.1 0 Middle 69.9 24.5 2.2 3.4 Lower-middle 52.9 23.1 14.3 9.7 Down 26.3 26.3 28.7 18.7 150 Upper 91.7 8.3 0 0 Middle 71.1 25.8 0.8 2.3 Lower-middle 54.7 22.5 12.9 9.9 Down 27.4 25.7 29.0 17.9 -
[1] 赵晓隆, 李会鹏, 赵华, 等. 两种催化油浆的热重反应动力学研究[J]. 石油与天然气化工, 2014, 43(4): 357-361. doi: 10.3969/j.issn.1007-3426.2014.04.003 [2] 陈静, 周晓龙, 金鸣林, 等. FCC油浆热转化制备中间相沥青的研究[J]. 华东理工大学学报(自然科学版), 2007, 33(2): 14-18. [3] CHEN K, ZHANG D, DAI Y, et al. Chemical and structural characterization of problematic suspended particles enriched from fluidized catalytic cracking slurry oil[J]. Chemical Engineering Research and Design, 2019, 143: 36-46. doi: 10.1016/j.cherd.2019.01.007 [4] SONG X N, LIU D, LOU B, et al. Removal of catalyst particles from fluid catalytic cracking slurry oil by the simultaneous addition of a flocculants and a weighting agent[J]. Chemical Engineering Research and Design, 2018, 132: 686-696. doi: 10.1016/j.cherd.2018.02.016 [5] JIAO S H, GUO A J, WANG F, et al. Sequential pretreatments of an FCC slurry oil sample for preparation of feedstocks for high-value solid carbon materials[J]. Fuel, 2021, 285: 119169. doi: 10.1016/j.fuel.2020.119169 [6] 吴洪波, 文婕, 张连红, 等. 催化裂化油浆的净化以及综合利用生产高附加值产品[J]. 应用化工, 2020, 49(10): 2618-2624,2635. doi: 10.3969/j.issn.1671-3206.2020.10.047 [7] CUI L R, CHEN H, XU J, et al. Chemical modification process of heavy residue from FCC slurry oil for producing high-grade paving asphalt[J]. Fuel, 2020, 265: 117002. doi: 10.1016/j.fuel.2019.117002 [8] 郭爱军, 靳正正, 龚黎明, 等. 助剂辅助催化裂化油浆离心-静电组合脱固工艺[J]. 化工进展, 2019, 38(7): 3126-3135. [9] 吕涯, 尹玖黎. 催化裂化油浆液固分离技术研究[J]. 石化技术, 2009, 16(3): 53-57. doi: 10.3969/j.issn.1006-0235.2009.03.016 [10] 严生虎, 钱杰, 王哲明, 等. PTA废水的沉降模型分析、验证与应用[J]. 南京工业大学学报(自然科学版), 2012, 34(1): 91-94. [11] MCLAUGHLIN R T. The settling properties of suspensions[J]. American Society of Civil Engineers, 1961, 85(12): 9-41. [12] 桂福坤, 方帅, 曲晓玉, 等. 舟山近海海域养殖水体悬浮物沉降特性试验研究[J]. 农业工程学报, 2020, 36(10): 206-212. doi: 10.11975/j.issn.1002-6819.2020.10.025 [13] FATHI-MOGHADAM M, ARMAN A N, EMAMGHOLIZADEH S, et al. Settling properties of cohesive sediments in lakes and reservoirs[J]. Journal of Waterway Port Coastal & Ocean Engineering, 2011, 137(4): 204-209. [14] 孙晓峰, 纪国栋, 冯松林, 等. 幂律流体中岩屑颗粒沉降速度实验[J]. 断块油气田, 2016, 23(1): 120-124. [15] STOKES G G. Mathematical and Physical Papers[M]. New York: Cambridge University Press, 2009. [16] 张亮, 张玉明, 张浩然, 等. 催化裂化油浆固含量测定及组成分析[J]. 化工进展, 2019, 38(9): 4052-4059. [17] CAMENEN B. Simple and general formula for the settling velocity of particles[J]. Journal of Hydraulic Engineering, 2007, 133(2): 229-233. doi: 10.1061/(ASCE)0733-9429(2007)133:2(229) [18] VERJUS R, GUILLOU S, EZERSKY A, et al. Chaotic sedimentation of particle pairs in a vertical channel at low Reynolds number: Multiple states and routes to chaos[J]. Physics of Fluids, 2016, 28(12): 123303. doi: 10.1063/1.4968559 -