Preparation of A Novel Natural Compound Fungicide against Fusarium graminearum and its Verification on Wheat Coleoptiles
-
摘要: 比较了肉桂醛、柠檬醛、香芹酚、芳樟醇、百里香酚、薄荷醇、紫苏醇对小麦赤霉病菌的体外抑菌效果,并进一步将香芹酚和百里香酚组合成新型复合天然抑菌剂。结果显示,当香芹酚和百里香酚质量比为1∶2时,抑菌剂对小麦赤霉病菌的体外抑制效果最佳,二者间具有协同作用。制备的抑菌剂能够改变病原菌细胞膜的通透性并显著抑制被侵染小麦胚芽鞘上病斑的生长。本文为开发具有精准功效的复合天然农药提供了理论指导和实用参考。Abstract: Antifungal effects of 7 different active components from plant essential oils (including cinnamaldehyde, citral, carvacrol, linalool, thymol, menthol, perillyl alcohol) against Fusarium graminearum (F.g.) were compared by the method of inhibiting mycelial growth in vitro. Citral, carvacrol, and thymol were selected due to their lower EC50 values and formed a compound with each other, respectively. The compound composed of carvacrol and thymol was considered the most excellent paring with the best inhibitory effect against F.g. in vitro. Additionally, the mass ratio of carvacrol and thymol in the compound was optimized and finalized the formulation of natural compound fungicide. Results showed that when the mass ratio of carvacrol and thymol was 1∶2, the fungicide had the best antifungal effect against F.g. and the synergistic index (S.I.) is 1.45, which showed a synergistic effect. The possible antifungal mechanisms of carvacrol and thymol compound were also analyzed. The prepared natural compound fungicide could change the permeability of F.g.’s cell membrane, reflected by the change in conductivity. Furthermore, the effects of the prepared natural compounded fungicide on wheat coleoptiles against F.g. were studied. It could significantly inhibit the growth of lesions on wheat coleoptiles. When fungicide, which concentration was 200 μg·mL−1, was administered to wheat coleoptiles infected by F.g., the control rate of the protective group and the curative group were 79.08 % and 84.54 %, respectively. This research provided theoretical guidance for developing natural compound fungicides with precise efficacy. The possibility of further application of active components of plant essential oils has also been discussed.
-
Key words:
- Essential oil /
- Fusarium graminearum /
- Antifungal activity /
- Fungicide /
- Wheat coleoptile
-
图 2 上清液电导率值的变化;数据点附近的字母表示显著性差异(p<0.05),其中大写字母表示同时间不同浓度之间的差异,小写字母表示同浓度不同时间之间的差异;C.K.表示空白对照组。
Figure 2. Changes of conductivity of supernatant due to natural compound fungicides. Letters near each data indicate significant differences at p<0.05, where uppercase letters indicate differences between concentrations at the same time, lowercase letters indicate the difference between times at the same concentration. C.K. means blank control.
表 1 七种植物精油活性成分对F.g.的体外相对抑菌率 (%)
Table 1. Inhibitory effects of 7 active components from plant essential oils against F.g. (%) in vitro
Cinnamaldehyde Citral Carvacrol Linalool Thymol Menthol Perillyl Alcohol R 95.3±1.4 98.3±0.5 100.0±0.0 62.3±2.9 100.0±0.0 100.0±0.0 94.7±0.2 表 2 不同浓度植物精油活性成分对F.g.的抑制效果
Table 2. Inhibitory effects of active components from plant essential oils at different concentrations
Component Equation r EC50/(μg·mL−1) 95% C.I./(μg·mL−1) Cinnamaldehyde y=0.006x−0.938 0.968 166.7 94.8~273.3 Citral y=0.007x−0.851 0.988 126.3 107.8~145.5 Carvacrol y=0.016x−0.731 0.995 45.3 37.1~53.3 Thymol y=0.018x−1.302 0.985 70.6 63.2~79.1 Menthol y=0.010x−1.790 0.999 176.1 160.7~194.3 Perillyl Alcohol y=0.007x−1.368 0.993 189.5 170.8~210.9 *95 % C.I. indicates 95 % Confidence Interval 表 3 复合天然抑菌剂配方优化及作用特征
Table 3. Natural compound fungicide formula optimization results and S.I. for F.g.
m(carvacrol)∶
m(thymol)Equation r Mm Mt S.I. EC50 95 % C.I. 3∶1 y=0.029x−1.673 0.996 57.1 52.2~62.9 49.8 0.87 2∶1 y=0.018x−0.990 0.997 54.8 47.9~63.1 51.4 0.94 1∶1 y=0.024x−1.248 0.986 52.2 46.7~58.5 55.2 1.06 1∶2 y=0.021x−0.881 0.993 41.2 35.6~47.4 59.6 1.45 1∶3 y=0.021x−0.907 0.997 42.4 36.8~48.6 62.0 1.46 *95 % C.I. indicates 95 % Confidence Interval;The unit of Mm & Mt
are μg·mL−1表 4 新型复合天然抑菌剂对侵染小麦胚芽鞘上病斑长度的控制率
Table 4. Lesion length and its control rate of natural compound fungicide against F.g. on wheat coleoptiles
Fungicide Concentration/
(μg·mL−1)Protective Activity Curative Activity Lesion Length/(cm) Control Rate/(%) Lesion Length/(cm) Control Rate/(%) 50 0.83±0.09 a 42.84 c 0.79±0.09 a 45.77 c 100 0.60±0.04 b 58.69 b 0.56±0.07 b 61.58 b 200 0.30±0.06 c 79.08 a 0.23±0.08 c 84.54 a *Lowercase letters in each column indicate significant differences at p<0.05. -
[1] Kazan K, Gardiner D M, Manners J M. On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance[J]. Molecular Plant Pathology, 2012, 13(4): 399-413. [2] Dean R, Van Kan J A L, Pretorius Z A, et al. The Top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(4): 414-430. [3] CHEN Y, Kistler H C, MA Z H. Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management[J]. Annual Review of Phytopathology, 2019, 57: 15-39. [4] 翟秀超, 冯文旭, 吴殿辉, 等. 植物精油对真菌微生物抑制作用的研究进展[J]. 食品与发酵工业, 2021, 47(6): 259-266, 279. [5] Aktar W, Sengupta D, Chowdhury A. Impact of pesticides use in agriculture: their benefits and hazards[J]. Interdisciplinary Toxicology, 2009, 2(1): 1-12. [6] Bakkali F, Averbeck S, Averbeck D, et al. Biological effects of essential oils–A review[J]. Food and Chemical Toxicology, 2008, 46(2): 446-475. [7] Nazzaro F, Fratianni F, Coppola R, et al. Essential Oils and Antifungal Activity[J]. Pharmaceuticals, 2017, 10(4): 86. [8] 王龑, 林威, 俞根荣, 等. 植物精油在食品防霉保质中应用的研究进展[J]. 核农学报, 2021, 35(5): 1170-1177. [9] 赵娜娜, 卢若滨, 加米古丽·木斯尔汗, 等. 11种植物精油对2种棉花病原菌的抑菌活性[J]. 新疆农业科学, 2020, 57(4): 679-685. [10] Sharma A, Sharma N K, Srivastava A, et al. Clove and lemongrass oil based non-ionic nanoemulsion for suppressing the growth of plant pathogenic Fusarium oxysponun f. sp lycopersici[J]. Industrial Crops And Products, 2018, 123: 353-362. [11] Gill T A, Li J, Saenger M, et al. Thymol-based submicron emulsions exhibit antifungal activity against Fusarium graminearum and inhibit Fusarium head blight in wheat[J]. Journal Of Applied Microbiology, 2016, 121(4): 1103-1116. [12] 郭丹, 雷潇, 王鹏, 等. 山苍子油主成分及其衍生物对植物病原菌的抑制作用[J]. 江西农业大学学报, 2016, 38(2): 283-289. [13] Mutlu-Ingok A, Devecioglu D, Dikmetas D N, et al. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: an updated review[J]. Molecules, 2020, 25(20): 4711. [14] 马秋, 章勇, 王照国, 等. 5种植物精油抑菌活性及其化学成分研究[J]. 植物保护, 2020, 46(4): 161-167. [15] 刘圣明, 海飞, 车志平, 等. 4种杀菌剂及其复配剂对番茄灰霉病菌的毒力[J]. 植物保护, 2017, 43(2): 230-234. [16] 欧晓明, 林雪梅, 盛书祥, 等. 评价杀虫剂混用联合作用的六种方法比较[J]. 农药科学与管理, 1997(1): 20-23. [17] 刘耀华, 马新耀, 程作慧, 等. 香茅精油对番茄早疫病菌的抑菌作用及抑菌机制[J]. 应用生态学报, 2017, 28(9): 3016-3022. [18] XIU Q, BI L, XU H, et al. Antifungal Activity of Quinofumelin against Fusarium graminearum and Its Inhibitory Effect on DON Biosynthesis[J]. Toxins, 2021, 13(5): 348. [19] 王新伟, 刘欢, 魏静, 等. 牛至油、香芹酚、柠檬醛和肉桂醛抑菌作用研究[J]. 食品工业, 2010, 31(5): 13-16. [20] 余伯良, 罗惠波, 周健, 等. 山苍子油抗霉菌及抑制黄曲霉产毒的有效成分研究[J]. 四川轻化工学院学报, 2002(1): 32-36. [21] Bounar R, Krimat S, Boureghda H, et al. Chemical analyses, antioxidant and antifungal effects of oregano and thyme essential oils alone or in combination against selected Fusarium species[J]. International Food Research Journal, 2020, 27(1): 66-77. [22] Stević T, Berić T, Šavikin K, et al. Antifungal activity of selected essential oils against fungi isolated from medicinal plant[J]. Industrial Crops and Products, 2014, 55: 116-122. [23] 蔡昀盈, 吴梦琪, 夏玮, 等. 甘草与厚朴复配物对变异链球菌及生物膜形成的抑制作用[J]. 华东理工大学学报(自然科学版), 2021, 47(2): 202-208. [24] 郝文凤, 田玉红, 董菲, 等. 植物精油协同抑菌的研究进展[J]. 中国调味品, 2020, 45(3): 172-175. [25] Ahmad A, Khan A, Akhtar F, et al. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2011, 30(1): 41-50. [26] Zabka M, Pavela R. Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi[J]. Chemosphere, 2013, 93(6): 1051-1056. [27] 周梦娇, 万春鹏, 陈金印. 11种中草药提取物对柑橘意大利青霉抑菌活性及机理研究[J]. 食品与发酵工业, 2014, 40(4): 37-41. [28] Nazzaro F, Fratianni F, De Martino L, et al. Effect of Essential Oils on Pathogenic Bacteria[J]. Pharmaceuticals, 2013, 6(12): 1451-1474. -