高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

聚乙二醇在2-正丁氧基乙醇/水混合溶剂中的溶剂化行为

柏宇霄 于思涵 陈志云

柏宇霄, 于思涵, 陈志云. 聚乙二醇在2-正丁氧基乙醇/水混合溶剂中的溶剂化行为[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220123001
引用本文: 柏宇霄, 于思涵, 陈志云. 聚乙二醇在2-正丁氧基乙醇/水混合溶剂中的溶剂化行为[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220123001
BAI Yuxiao, YU Sihan, CHEN Zhiyun. Solvation Behaviors of Polyethylene glycol in Mixed Solvents of 2-Butoxyethanol/Water[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220123001
Citation: BAI Yuxiao, YU Sihan, CHEN Zhiyun. Solvation Behaviors of Polyethylene glycol in Mixed Solvents of 2-Butoxyethanol/Water[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220123001

聚乙二醇在2-正丁氧基乙醇/水混合溶剂中的溶剂化行为

doi: 10.14135/j.cnki.1006-3080.20220123001
基金项目: 国家自然科学基金(21403067,21773063)
详细信息
    作者简介:

    柏宇霄(1997年—),安徽人,女,硕士生,主要研究方向:溶液化学。E-mail:yxbai97@163.com

    通讯作者:

    陈志云,E-mail address:chenzhiyun@ecust.edu.cn

  • 中图分类号: O64

Solvation Behaviors of Polyethylene glycol in Mixed Solvents of 2-Butoxyethanol/Water

  • 摘要: 通过测量动态光散射、共振光散射、密度、热容研究了一系列聚乙二醇(PEG)/2-正丁基乙醇(2BE)/水溶液的性质。粒径分布和共振光散射强度结果表明2BE含量会影响溶液中的聚集结构和相互作用,PEG分子加入会破坏并重组2BE/H2O缔合物聚集体和2BE自缔合体,并使其尺寸增大。通过密度和热容数据得到25℃下PEG链节在2BE/H2O混合溶剂中的表观无限稀释摩尔体积$V_{\varPhi ,PEG}^0$、相互作用参数SV和表观摩尔热容CΦ,PEG。上述宏观热力学量的特征变化反映了溶液体系中存在的结构和相互作用。

     

  • 图  1  25℃溶液中存在的两种粒子尺寸随x2BE的变化:(a)小尺寸聚集体,(b)介观结构

    Figure  1.  The plots of size of two structures against the mole fraction x2BEat 25℃: (a) small size aggregates , (b)mesoscopic structures

    图  2  在25℃、λex=λem=455 nm下,PEG(wPEG=2%)/2BE/H2O和2BE/H2O溶液共振光散射强度随2BE摩尔分数x2BE的变化

    Figure  2.  Plots of resonance light scattering intensity against the mole fraction x2BE at 25℃and λex=λem=455 nm for PEG(wPEG=2%)/2BE/H2O and 2BE/H2O solutions.

    图  3  在25℃不同x2BE下PEG/2BE/H2O溶液中的PEG表观摩尔体积VΦ,PEG随PEG质量分数wPEG的变化

    Figure  3.  Plots of the apparent molar volume VΦ,PEG of PEG against mass fraction of PEG wPEG for PEG/2BE/H2O solutions with various mole fractions x2BE of 2BE at 25℃

    图  4  (a) PEG的表观无限稀释摩尔体积$V_{\Phi ,PEG}^0$随2BE摩尔分数x2BE的变化;(b)相互作用参数SV随2BE摩尔分数x2BE的变化。所有内插图是在富水区的放大图Fig.4(a) Plots of apparent infinite dilution molar volume$V_{\Phi ,PEG}^0$of PEG against the mole fraction x2BE; (b)Plots of interaction parameter SV against the mole fraction x2BE. The insetsare magnified views of the rich water area

    图  5  在25℃下PEG表观摩尔热容CΦ,PEG随2BE摩尔分数x2BE的变化

    Figure  5.  Plots of apparent molar heat capacityCΦ,PEG of PEG against the mole fraction x2BE at 25℃

    表  1  25℃下不同2BE摩尔分数x2BE的PEG/2BE/H2O溶液中PEG的表观无限稀释摩尔体积$V_{\Phi ,PEG}^0$和体积相互作用参数SV

    Table  1.   Values of apparent infinite dilution molar volume $V_{\Phi ,PEG}^0$of PEG and volumetric interaction parameter SV for PEG/2BE/H2O solutions with various mole fractions x2BE of 2BE at 25℃

    x2BE$V_{\varPhi ,PEG}^0$/(cm3·mol−1)SV /(cm3·mol−1)
    037.042±0.001−0.37±0.01
    0.0031036.964±0.001−0.27±0.02
    0.0063136.908±0.001−0.14±0.01
    0.0096436.887±0.001−0.14±0.01
    0.013136.882±0.001−0.03±0.01
    0.016736.860±0.0010.37±0.01
    0.020436.808±0.0010.50±0.02
    0.024236.783±0.0010.54±0.01
    0.028236.795±0.0010.45±0.02
    0.032436.806±0.0010.41±0.01
    0.036736.818±0.0010.34±0.01
    0.061336.917±0.0010.28±0.02
    0.092337.114±0.0010.28±0.01
    0.132337.341±0.0010.42±0.01
    0.186237.565±0.0010.50±0.01
    0.262437.888±0.0010.57±0.02
    0.379038.352±0.0010.67±0.02
    0.578438.797±0.0020.99±0.04
    下载: 导出CSV

    表  2  25℃时、不同x2BE下的PEG/2BE/H2O溶液的比热容cp,1和PEG在2BE水溶液中的表观摩尔热容CΦ,PEG

    Table  2.   Specific heat capacities cp,1 of PEG/2BE/H2O solutions, and apparent molar heat capacities CΦ, PEG of PEG in 2BE aqueous solutionswith various x2BE at 25 ℃

    x2BEcp,1/(J·g−1·K−1)CΦ,PEG/( J·mol−1·K−1)
    04.165±0.003148.9±9.3
    0.006314.183±0.003141.9±9.2
    0.009644.190±0.003127.2±9.2
    0.01314.203±0.003114.3±9.3
    0.01674.222±0.003110.3±9.3
    0.02044.224±0.003106.1±9.2
    0.02424.203±0.003117.5±9.2
    0.02824.171±0.003115.3±9.2
    0.03244.138±0.003106.9±9.2
    0.03674.097±0.00397.0±9.2
    0.06133.900±0.003103.4±9.2
    0.09233.692±0.003105.3±9.3
    0.13233.479±0.00399.6±9.3
    0.18623.254±0.003100.5±9.3
    0.26243.030±0.003103.4±9.2
    0.37902.806±0.003111.4±9.2
    0.57842.566±0.00394.5±9.2
    下载: 导出CSV
  • [1] Akhtar S, Khan Q, Anwar S, et al. A comparative study of the toxicity of polyethylene glycol-coated cobalt ferrite nanospheres and nanoparticles[J]. Nanoscale Research Letters, 2019, 14(1): 386/1-386/12.
    [2] Ganson N J, Povsic T J, Sullenger B A, et al. Pre-existing anti-polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer[J]. The Journal of Allergy and Clinical Immunology, 2016, 137(5): 1610-1613. doi: 10.1016/j.jaci.2015.10.034
    [3] Naskar A, Khan H, Sarkar R, et al. Anti-biofilm activity and food packaging application of room temperature solution process based polyethylene glycol capped Ag-ZnO-graphene nanocomposite[J]. Materials Science and Engineering:C, 2018, 91(1): 743-753.
    [4] Shi W Z, Xing J W, Lin J S, et al. Advances in shape memory polymer materials based on polyethylene glycol[J]. Polymer Materials Science and Engineering, 2018, 34(4): 152-158.
    [5] 陈玉菲, 高宗英, 张旭初, 等. 羟基积雪草苷脂质体的制备及体外透皮研究[J]. 当代化工研究, 2021(19): 19-21. doi: 10.3969/j.issn.1672-8114.2021.19.009
    [6] Liu K J, Parsons J L. Solvent effects on the preferred conformation of poly(ethylene glycols)[J]. Macromolecules, 1969, 2(5): 529-533. doi: 10.1021/ma60011a015
    [7] Tadokoro H, Chatani Y, Yoshihara T, et al. Structural studies on polyethers, [-(CH2)m-O-]n. II. Molecular structure of polyethylene oxide[J]. Die Makromolekulare, 1964, 73(1): 109-127. doi: 10.1002/macp.1964.020730109
    [8] Maxfield J, Shepherd I W. Conformation of poly(ethylene oxide) in the solid state, melt and solution measured by Raman scattering[J]. Polymer, 1975, 16(7): 505-509. doi: 10.1016/0032-3861(75)90008-7
    [9] Bluestone S, Mark J E, Flory P J. The Interpretation of viscosity-temperature coefficients for poly(oxyethylene) chains in a thermodynamically good solvent[J]. Macromolecules, 1974, 7(3): 325-328. doi: 10.1021/ma60039a013
    [10] Brown W, Stilbs P. On the solution conformation of poly(ethylene oxide). An FT-pulsed field gradient n. m. r. self-diffusion study[J]. Polymer, 1982, 23(12): 1780-1784. doi: 10.1016/0032-3861(82)90122-7
    [11] Lepori L, Mollica V. Volumetric properties of dilute aqueous solutions of poly(ethylene glycols)[J]. Journal of Polymer Science:Polymer Physics Edition, 1978, 16(6): 1123-1129. doi: 10.1002/pol.1978.180160617
    [12] Benko B, Buljan V, Vuk-Pavlovic S. Concentration-dependent proton magnetic cross relaxation in aqueous polyoxyethylene solutions[J]. Journal of Physical Chemistry, 1980, 84(8): 913-916. doi: 10.1021/j100445a025
    [13] Chew B, Couper A. Diffusion, viscosity, and sedimentation of poly(ethylene oxide) in water[J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases, 1976, 72(2): 382-388.
    [14] Shandu J S, Prem J. Viscosity-​molecular weight relationship for solvent poly(oxyethylene)​glycol systems[J]. Journal of the Indian Chemical Society, 1979, 56(5): 538-539.
    [15] Daoust H, St-Cyr D. Microcalorimetric study of poly(ethylene oxide) in water and in water-ethanol mixed solvent[J]. Macromolecules, 1984, 17(4): 596-601. doi: 10.1021/ma00134a013
    [16] Zheng X, Anisimov M A, Sengers J V, et al. Mesoscopic diffusion of poly(ethylene oxide) in pure and mixed solvents.[J]. Journal of Physical Chemistry B, 2018, 122(13): 3454-3464. doi: 10.1021/acs.jpcb.7b10420
    [17] Alessi M L, Norman A I, Knowlton S E, et al. Helical and coil conformations of poly (ethylene glycol) in isobutyric acid and water[J]. Macromolecules, 2005, 38(22): 9333-9340. doi: 10.1021/ma051339e
    [18] Roux G, Perron G, Desnoyers J E. Model systems for hydrophobic interactions: Volumes and heat capacities ofn-alkoxyethanols in water[J]. Journal of Solution Chemistry, 1978, 7(9): 639-654. doi: 10.1007/BF00652015
    [19] Chiou D R, Chen L J, et al. Density, viscosity, and refractive index for water + 2-butoxyethanol and + 2-(2-Butoxyethoxy)ethanol at various temperatures[J]. Journal of Chemical & Engineering Data, 2010, 55(2): 1012-1016.
    [20] Douhéret G, Pal A. Dielectric constants and densities of aqueous mixtures of 2-alkoxyethanols at 25℃[J]. Journal of Chemical & Engineering Data, 1988, 33(1): 40-43.
    [21] Douhéret G, Davis M I, Reis J, et al. Aggregative processes in aqueous solutions of isomeric 2-butoxyethanols at 298.15 K[J]. Physical Chemistry Chemical Physics, 2002, 4(24): 6034-6042. doi: 10.1039/B208598D
    [22] Elizalde F, Gracia J, Costas M. Effect of aggregates in bulk and surface properties. Surface tension, foam stability, and heat capacities for 2-butoxyethanol + water[J]. Journal of Physical Chemistry B, 1988, 92(12): 3565-3568. doi: 10.1021/j100323a048
    [23] D'Angelo M, Onori G, Santucci A. Self-association of monohydric alcohols in water: compressibility and infrared absorption measurements[J]. Journal of Chemical Physics, 1994, 100(4): 3107-3113. doi: 10.1063/1.466452
    [24] Mallamace F, Micali N, D'Arrigo G. Dynamical effects of supramolecular aggregates in water-butoxyethanol mixtures studied by viscosity measurements[J]. Physical Review A, 1991, 44(10): 6652-6658. doi: 10.1103/PhysRevA.44.6652
    [25] Troncoso J, K Zemánková, Jover A. Dynamic light scattering study of aggregation in aqueous solutions of five amphiphiles[J]. Journal of Molecular Liquids, 2017, 241: 525-529. doi: 10.1016/j.molliq.2017.06.022
    [26] D'Arrigo G, GiordanoR, TeixeiraJ. Small-angle neutron scattering studies of aqueous solutions of short-chain amphiphiles[J]. The European Physical Journal E, 2003, 10(2): 135-142. doi: 10.1140/epje/e2003-00017-x
    [27] Koehler R D, Schubert K V, Strey R, et al. The Lifshitz line in binary systems: structures in water/C4E1 mixtures[J]. Journal of Chemical Physics, 1994, 101(12): 10843-10849. doi: 10.1063/1.467833
    [28] Gupta R, Patey G N. Association and microheterogeneity in aqueous 2-Butoxyethanol solutions[J]. Journal of Physical Chemistry B, 2011, 115(51): 15323-15331. doi: 10.1021/jp209905g
    [29] Pattenaude S R, Rankin B M, Mochizuki K, et al. Water-mediated aggregation of 2-butoxyethanol[J]. Physical Chemistry Chemical Physics, 2016, 18(36): 24937-24943. doi: 10.1039/C6CP04379H
    [30] Yoshida K, Yamaguchi T, Otomo T, et al. Concentration fluctuations and cluster dynamics of 2-butoxyethanol–water mixtures by small-angle neutron scattering and neutron spin echo techniques[J]. Journal of Molecular Liquids, 2005, 119(1-3): 125-131. doi: 10.1016/j.molliq.2004.10.019
    [31] Indra S, Biswas R. Heterogeneity in (2-butoxyethanol+water) mixtures: hydrophobicity-induced aggregation or criticality-driven concentration fluctuations?[J]. The Journal of Chemical Physics, 2015, 142(20): 204501/1-204501/8.
    [32] Chen Z, Yu S, Liu D, et al. Solvation behaviors of poly(acrylic acid) in mixed Solvents of 2-butoxyethanol + water[J]. Journal of Solution Chemistry, 2018, 47(9): 1539-1552. doi: 10.1007/s10953-018-0809-x
    [33] Subramanian D, Boughter C T, Klauda J B, et al. Mesoscale inhomogeneities in aqueous solutions of small amphiphilic molecules[J]. Faraday Discussions, 2013, 167: 217-238. doi: 10.1039/c3fd00070b
    [34] Kato S, Jobe D, Rao N P, et al. Ultrasonic relaxation studies of 2-butoxyethanol-water and 2-butoxyethanol-water-cetyltrimethylammonium bromide solutions as a function of composition[J]. The Journal of Physical Chemistry, 1986, 90(17): 4167-4174. doi: 10.1021/j100408a066
    [35] Bender T M, Pecora R. Dynamic light scattering measurements of mutual diffusion coefficients of water-rich 2-butoxyethanol/water systems[J]. The Journal of Physical Chemistry, 1988, 92(6): 1675-1677. doi: 10.1021/j100317a056
    [36] Häbich A, Ducker W, Dunstan D E, et al. Do stable nanobubblesexist in mixtures of organic solvents and water?[J]. Journal of Physical Chemistry B, 2010, 114(20): 6962-6967. doi: 10.1021/jp911868j
    [37] Li Z, Cheng H, Li J, et al. Large-Scale structures in tetrahydrofuran–water mixture with a trace amount of antioxidant butylhydroxytoluene(BHT)[J]. Journal of Physical Chemistry B, 2011, 115(24): 7887-7895. doi: 10.1021/jp203777g
    [38] Sedlak M, Rak D. On the origin of mesoscale structures in aqueous solutions of tertiary butyl alcohol: the mystery resolved[J]. J Phys Chem B, 2014, 118(10): 2726-2737. doi: 10.1021/jp500953m
    [39] Tanaka T, Benedek G B. Measurement of the velocity of blood flow (in vivo) using a fiber optic catheter and optical mixing spectroscopy[J]. Applied Optics, 1975, 14(1): 189-196. doi: 10.1364/AO.14.000189
    [40] Liu S, Luo H, Li N, et al. Resonance rayleigh scattering study of the interaction of heparin with some basic diphenyl naphthylmethane dyes.[J]. Analytical Chemistry, 2001, 73(16): 3907-3914. doi: 10.1021/ac001454h
    [41] 于思涵, 施少雄, 陈志云, 等. 聚乙二醇在2-正丁氧基乙醇+水溶液中的溶剂化行为[C]//中国化学会第十九届全国化学热力学和热分析学术会议论文摘要集, 2018: 45. DOI: 10.26914/c.cnkihy.2018.022403.
    [42] Devanand K, Selser J C. Polyethylene oxide does not necessarily aggregate in water[J]. Nature, 1990, 343(6260): 739-741. doi: 10.1038/343739a0
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  25
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-23
  • 网络出版日期:  2022-05-12

目录

    /

    返回文章
    返回