高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于并行LSTM-CNN的化工过程故障检测

肖飞扬 顾幸生

肖飞扬, 顾幸生. 基于并行LSTM-CNN的化工过程故障检测[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220120001
引用本文: 肖飞扬, 顾幸生. 基于并行LSTM-CNN的化工过程故障检测[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220120001
XIAO Feiyang, GU Xingsheng. Fault Detection of Chemical Process Based on Parallel LSTM-CNN[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220120001
Citation: XIAO Feiyang, GU Xingsheng. Fault Detection of Chemical Process Based on Parallel LSTM-CNN[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220120001

基于并行LSTM-CNN的化工过程故障检测

doi: 10.14135/j.cnki.1006-3080.20220120001
基金项目: 国家自然科学基金项目(61973120)
详细信息
    作者简介:

    肖飞扬(1997—),男,硕士生,研究方向为基于机器学习的故障诊断。E-mail:m17864291933@163.com

    通讯作者:

    顾幸生,E-mail:xsgu@ecust.edu.cn

  • 中图分类号: TP277

Fault Detection of Chemical Process Based on Parallel LSTM-CNN

  • 摘要: 为保证生产过程的安全稳定运行,避免因故障导致损失,及时检测出异常工况并对异常工况进行准确诊断十分重要。针对化工过程的复杂性,提出一种并行长短时记忆网络和卷积神经网络(Parallel Long and Short-Term Memory Network and Convolutional Neural Network,PLSTM-CNN)模型进行化工生产过程故障检测。该模型有效结合LSTM对时间序列数据全局特征提取能力和CNN模型善于提取局部特征的能力,减少了特征信息的丢失,实现了较高的故障检测率。采用一维稠密卷积神经网络作为CNN的主体,结合LSTM网络对序列信息变化敏感的特点,在构建更深层网络的同时避免模型过拟合。采用最大互信息(Maximum Mutual Information Coefficient,MMIC)数据预处理方法,提高了数据的局部相关性以及从不同初始条件下PLSTM-CNN模型检测故障的效率。以TE (Tennessee Eastman)过程为研究对象,PLSTM-CNN模型在故障平均检测率和漏报率等指标上明显优于传统循环神经网络。

     

  • 图  1  维卷积操作

    Figure  1.  One-dimensional convolution operation

    图  2  稠密网络结构图

    Figure  2.  Dense network structure diagram

    图  3  LSTM结构

    Figure  3.  LSTM structure

    图  4  基于PLSTM-CNN故障诊断方法

    Figure  4.  Fault diagnosis method based on PLSTM-CNN

    图  5  MI网格计算方法

    Figure  5.  MI grid calculation method

    图  6  正常数据与故障数据互信息值

    Figure  6.  Mutual information value of normal data and fault data

    图  7  变量排序后的格式

    Figure  7.  Sorted variable order

    图  8  PLSTM-CNN网络模型

    Figure  8.  PLSTM-CNN network model

    图  9  基于t-SNE的故障诊断可视化

    Figure  9.  Fault diagnosis visualization base on t-SNE

    图  10  串行LSTM-CNN网络结构

    Figure  10.  Serial LSTM-CNN network structure

    图  11  平均故障检测率

    Figure  11.  Average fault detection rate

    表  1  故障检测结果比较

    Table  1.   Comparison of fault detection results

    TypeFDRFPR
    2D-CNNLSTMPLSTM-CNN2D-CNNLSTMPLSTM-CNN
    Normal 0.91 0.96 0.96 0.09 0.04 0
    Fault1 1.00 1.00 1.00 0 0 0
    Fault2 1.00 1.00 1.00 0 0 0
    Fault3 0.48 0.75 0.92 0.44 0.15 0.08
    Fault4 1.00 1.00 1.00 0 0 0
    Fault5 1.00 1.00 1.00 0 0 0
    Fault6 1.00 1.00 1.00 0 0 0
    Fault7 1.00 1.00 1.00 0 0 0
    Fault8 0.80 1.00 1.00 0.20 0 0
    Fault9 0.34 0.36 0.85 0.58 0.23 0.18
    Fault10 0.93 0.94 0.92 0.06 0.02 0.01
    Fault11 0.96 0.93 0.97 0.04 0.03 0.02
    Fault12 0.95 0.98 0.98 0.05 0.02 0.01
    Fault13 0.82 0.95 0.96 0.18 0.04 0.04
    Fault14 0.84 0.92 0.96 0.16 0.05 0.04
    Fault15 0.04 0.12 0.37 0.80 0.64 0.51
    Fault16 0.09 0.18 0.33 0.75 0.62 0.48
    Fault17 0.96 0.97 1.00 0.04 0.02 0.03
    Fault18 1.00 1.00 0.98 0 0 0
    Fault19 1.00 1.00 1.00 0 0 0
    Fault20 1.00 1.00 1.00 0 0 0
    Average 0.83 0.86 0.91 0.16 0.08 0.06
    下载: 导出CSV

    表  2  训练、推理时间比较

    Table  2.   Comparison of training and reasoning time

    ModelTraining time for
    one epoch/s
    Reasoning time for
    one epoch/ms
    1D-CNN2.5410
    2D-CNN65.00200
    LSTM3.0012
    CLSTM-CNN3.8020
    PLSTM-CNN4.2025
    下载: 导出CSV

    表  3  小样本平均故障检测率

    Table  3.   Average fault detection rate of small samples

    ModelFDRFPR
    1D-CNN0.830.09
    2D-CNN0.780.07
    LSTM0.840.09
    CLSTM-CNN0.850.12
    PLSTM-CNN0.900.05
    下载: 导出CSV
  • [1] 刘强, 柴天佑, 秦泗钊, 等. 基于数据和知识的工业过程监视及故障诊断综述[J]. 控制与决策, 2010, 25(6): 801-807+813.
    [2] DONG Y, QIN S J. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring[J]. Journal of Process Control, 2018, 67: 1-11. doi: 10.1016/j.jprocont.2017.05.002
    [3] DONG J, ZHANG K, HUANG Y, et al. Adaptive total PLS based quality-relevant process monitoring with application to the Tennessee Eastman process[J]. Neurocomputing, 2015, 154: 77-85. doi: 10.1016/j.neucom.2014.12.017
    [4] AJAMI A, DANESHVAR M. Data driven approach for fault detection and diagnosis of turbine in thermal power plant using Independent Component Analysis (ICA)[J]. International Journal of Electrical Power & Energy Systems, 2012, 43(1): 728-735.
    [5] CHIANG L H, RUSSELL E L, BRAATZ R D. Fault diagnosis in chemical processes using fisher discriminant analysis, discriminant partial least squares, and principal component analysis[J]. Chemometrics and intelligent laboratory systems, 2000, 50(2): 243-252. doi: 10.1016/S0169-7439(99)00061-1
    [6] VENKATASUBRAMANIAN V, CHAN K. A neural network methodology for process fault diagnosis[J]. AIChE Journal, 1989, 35(12): 1993-2002. doi: 10.1002/aic.690351210
    [7] 胡寿松, 王源. 基于支持向量机的非线性系统故障诊断[J]. 控制与决策, 2001, 16(5): 617-620. doi: 10.3321/j.issn:1001-0920.2001.05.025
    [8] CHOI S W, PARK J H, LEE I B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis[J]. Computers & Chemical Engineering, 2004, 28(8): 1377-1387.
    [9] HE Q P, WANG J. Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes[J]. IEEE transactions on semiconductor manufacturing, 2007, 20(4): 345-354. doi: 10.1109/TSM.2007.907607
    [10] 何宁. 基于 ICA-PCA 方法的流程工业过程监控与故障诊断研究[D]. 杭州: 浙江大学, 2004.
    [11] 刘永斌, 何清波, 孔凡让, 等. 基于 PCA 和 SVM 的内燃机故障诊断[J]. 振动, 测试与诊断, 2012, 32(2): 250-255.
    [12] XIE D, BAI L. A hierarchical deep neural network for fault diagnosis on Tennessee-Eastman process[C]//2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA). [s.l.]: IEEE, 2015: 745-748.
    [13] ZHANG Z, ZHAO J. A deep belief network based fault diagnosis model for complex chemical processes[J]. Computers & Chemical Engineering, 2017, 107: 395-407.
    [14] WANG Y, PAN Z, YUAN X, et al. A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network[J]. ISA Transactions, 2020, 96: 457-467. doi: 10.1016/j.isatra.2019.07.001
    [15] WU H, ZHAO J. Deep convolutional neural network model based chemical process fault diagnosis[J]. Computers & Chemical Engineering, 2018, 115: 185-197.
    [16] 肖雄, 王健翔, 张勇军, 等. 一种用于轴承故障诊断的二维卷积神经网络优化方法[J]. 中国电机工程学报, 2019, 39(15): 4558-4568.
    [17] 曲建岭, 余路, 袁涛, 等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报, 2018, 39(7): 134-143.
    [18] KIRANYAZ S, GASTLI A, BEN-BRAHIM L, et al. Real-time fault detection and identification for MMC using 1D convolutional neural networks[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8760-8771.
    [19] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [s.l.]: IEEE, 2017: 4700-4708.
    [20] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681.
    [21] STAUDEMEYER R C, MORRIS E R. Understanding LSTM: A tutorial into long short-term memory recurrent neural networks[EB/OL]. (2019-09-12) [2021-10-20]. https://arxiv.org/abs/1909.09586.
    [22] BATHELT A, RICKER N L, JELALI M. Revision of the Tennessee Eastman process model[J]. IFAC-PapersOnLine, 2015, 48(8): 309-314. doi: 10.1016/j.ifacol.2015.08.199
    [23] KRASKOV A, STÖGBAUER H, GRASSBERGER P. Estimating mutual information[J]. Physical Review E, 2004, 69(6): 066138. doi: 10.1103/PhysRevE.69.066138
    [24] RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524. doi: 10.1126/science.1205438
    [25] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(11): 2579-2605.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  136
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 网络出版日期:  2022-04-24

目录

    /

    返回文章
    返回