Fault Detection of Chemical Process Based on Parallel LSTM-CNN
-
摘要: 为保证生产过程的安全稳定运行,避免因故障导致损失,及时检测出异常工况并对异常工况进行准确诊断十分重要。针对化工过程的复杂性,提出一种并行长短时记忆网络和卷积神经网络(Parallel Long and Short-Term Memory Network and Convolutional Neural Network,PLSTM-CNN)模型进行化工生产过程故障检测。该模型有效结合LSTM对时间序列数据全局特征提取能力和CNN模型善于提取局部特征的能力,减少了特征信息的丢失,实现了较高的故障检测率。采用一维稠密卷积神经网络作为CNN的主体,结合LSTM网络对序列信息变化敏感的特点,在构建更深层网络的同时避免模型过拟合。采用最大互信息(Maximum Mutual Information Coefficient,MMIC)数据预处理方法,提高了数据的局部相关性以及从不同初始条件下PLSTM-CNN模型检测故障的效率。以TE (Tennessee Eastman)过程为研究对象,PLSTM-CNN模型在故障平均检测率和漏报率等指标上明显优于传统循环神经网络。
-
关键词:
- 故障检测 /
- 一维稠密卷积神经网络 /
- 长短时记忆网络 /
- 互信息 /
- TE过程
Abstract: In order to ensure the safe and stable operation of production processes and avoid losses caused by faults, it is quite important to detect abnormal working conditions in time and diagnose them accurately. Aiming at the complexity of chemical processes, this paper proposes a parallel long and short-term memory network and convolutional neural network (PLSTM-CNN) model for fault detection in chemical production process. By combining the LSTM's ability to extract global features from time series data and the CNN model's ability to extract local features, this model can effectively reduce the loss of feature information and achieve a high fault detection rate. Meanwhile, by using one-dimensional dense convolutional neural network as the main body of CNN and combining the LSTM network's sensitivity to sequence information changes, a deeper network can be built while avoiding model over fitting. Besides, the maximum mutual information coefficient (MMIC) data preprocessing method is adopted to improve the local correlation of the data and improve the efficiency of the PLSTM-CNN model in detecting faults under different initial conditions. Finally, it is shown from the experiment results on Tennessee Eastman (TE) process that the PLSTM-CNN model is obviously superior to the traditional recurrent neural network in such indicators as average failure detection rate and false negative rate. -
表 1 故障检测结果比较
Table 1. Comparison of fault detection results
Type FDR FPR 2D-CNN LSTM PLSTM-CNN 2D-CNN LSTM PLSTM-CNN Normal 0.91 0.96 0.96 0.09 0.04 0 Fault1 1.00 1.00 1.00 0 0 0 Fault2 1.00 1.00 1.00 0 0 0 Fault3 0.48 0.75 0.92 0.44 0.15 0.08 Fault4 1.00 1.00 1.00 0 0 0 Fault5 1.00 1.00 1.00 0 0 0 Fault6 1.00 1.00 1.00 0 0 0 Fault7 1.00 1.00 1.00 0 0 0 Fault8 0.80 1.00 1.00 0.20 0 0 Fault9 0.34 0.36 0.85 0.58 0.23 0.18 Fault10 0.93 0.94 0.92 0.06 0.02 0.01 Fault11 0.96 0.93 0.97 0.04 0.03 0.02 Fault12 0.95 0.98 0.98 0.05 0.02 0.01 Fault13 0.82 0.95 0.96 0.18 0.04 0.04 Fault14 0.84 0.92 0.96 0.16 0.05 0.04 Fault15 0.04 0.12 0.37 0.80 0.64 0.51 Fault16 0.09 0.18 0.33 0.75 0.62 0.48 Fault17 0.96 0.97 1.00 0.04 0.02 0.03 Fault18 1.00 1.00 0.98 0 0 0 Fault19 1.00 1.00 1.00 0 0 0 Fault20 1.00 1.00 1.00 0 0 0 Average 0.83 0.86 0.91 0.16 0.08 0.06 表 2 训练、推理时间比较
Table 2. Comparison of training and reasoning time
Model Training time for
one epoch/sReasoning time for
one epoch/ms1D-CNN 2.54 10 2D-CNN 65.00 200 LSTM 3.00 12 CLSTM-CNN 3.80 20 PLSTM-CNN 4.20 25 表 3 小样本平均故障检测率
Table 3. Average fault detection rate of small samples
Model FDR FPR 1D-CNN 0.83 0.09 2D-CNN 0.78 0.07 LSTM 0.84 0.09 CLSTM-CNN 0.85 0.12 PLSTM-CNN 0.90 0.05 -
[1] 刘强, 柴天佑, 秦泗钊, 等. 基于数据和知识的工业过程监视及故障诊断综述[J]. 控制与决策, 2010, 25(6): 801-807+813. [2] DONG Y, QIN S J. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring[J]. Journal of Process Control, 2018, 67: 1-11. doi: 10.1016/j.jprocont.2017.05.002 [3] DONG J, ZHANG K, HUANG Y, et al. Adaptive total PLS based quality-relevant process monitoring with application to the Tennessee Eastman process[J]. Neurocomputing, 2015, 154: 77-85. doi: 10.1016/j.neucom.2014.12.017 [4] AJAMI A, DANESHVAR M. Data driven approach for fault detection and diagnosis of turbine in thermal power plant using Independent Component Analysis (ICA)[J]. International Journal of Electrical Power & Energy Systems, 2012, 43(1): 728-735. [5] CHIANG L H, RUSSELL E L, BRAATZ R D. Fault diagnosis in chemical processes using fisher discriminant analysis, discriminant partial least squares, and principal component analysis[J]. Chemometrics and intelligent laboratory systems, 2000, 50(2): 243-252. doi: 10.1016/S0169-7439(99)00061-1 [6] VENKATASUBRAMANIAN V, CHAN K. A neural network methodology for process fault diagnosis[J]. AIChE Journal, 1989, 35(12): 1993-2002. doi: 10.1002/aic.690351210 [7] 胡寿松, 王源. 基于支持向量机的非线性系统故障诊断[J]. 控制与决策, 2001, 16(5): 617-620. doi: 10.3321/j.issn:1001-0920.2001.05.025 [8] CHOI S W, PARK J H, LEE I B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis[J]. Computers & Chemical Engineering, 2004, 28(8): 1377-1387. [9] HE Q P, WANG J. Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes[J]. IEEE transactions on semiconductor manufacturing, 2007, 20(4): 345-354. doi: 10.1109/TSM.2007.907607 [10] 何宁. 基于 ICA-PCA 方法的流程工业过程监控与故障诊断研究[D]. 杭州: 浙江大学, 2004. [11] 刘永斌, 何清波, 孔凡让, 等. 基于 PCA 和 SVM 的内燃机故障诊断[J]. 振动, 测试与诊断, 2012, 32(2): 250-255. [12] XIE D, BAI L. A hierarchical deep neural network for fault diagnosis on Tennessee-Eastman process[C]//2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA). [s.l.]: IEEE, 2015: 745-748. [13] ZHANG Z, ZHAO J. A deep belief network based fault diagnosis model for complex chemical processes[J]. Computers & Chemical Engineering, 2017, 107: 395-407. [14] WANG Y, PAN Z, YUAN X, et al. A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network[J]. ISA Transactions, 2020, 96: 457-467. doi: 10.1016/j.isatra.2019.07.001 [15] WU H, ZHAO J. Deep convolutional neural network model based chemical process fault diagnosis[J]. Computers & Chemical Engineering, 2018, 115: 185-197. [16] 肖雄, 王健翔, 张勇军, 等. 一种用于轴承故障诊断的二维卷积神经网络优化方法[J]. 中国电机工程学报, 2019, 39(15): 4558-4568. [17] 曲建岭, 余路, 袁涛, 等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报, 2018, 39(7): 134-143. [18] KIRANYAZ S, GASTLI A, BEN-BRAHIM L, et al. Real-time fault detection and identification for MMC using 1D convolutional neural networks[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8760-8771. [19] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [s.l.]: IEEE, 2017: 4700-4708. [20] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681. [21] STAUDEMEYER R C, MORRIS E R. Understanding LSTM: A tutorial into long short-term memory recurrent neural networks[EB/OL]. (2019-09-12) [2021-10-20]. https://arxiv.org/abs/1909.09586. [22] BATHELT A, RICKER N L, JELALI M. Revision of the Tennessee Eastman process model[J]. IFAC-PapersOnLine, 2015, 48(8): 309-314. doi: 10.1016/j.ifacol.2015.08.199 [23] KRASKOV A, STÖGBAUER H, GRASSBERGER P. Estimating mutual information[J]. Physical Review E, 2004, 69(6): 066138. doi: 10.1103/PhysRevE.69.066138 [24] RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524. doi: 10.1126/science.1205438 [25] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(11): 2579-2605. -