高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于能效的THz-NOMA系统资源分配算法

于海增 袁伟娜 孙叔欢 朱煜

于海增, 袁伟娜, 孙叔欢, 朱煜. 基于能效的THz-NOMA系统资源分配算法[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220112005
引用本文: 于海增, 袁伟娜, 孙叔欢, 朱煜. 基于能效的THz-NOMA系统资源分配算法[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220112005
YU Haizeng, YUAN Weina, SHUN Shuhuan, ZHU Yu. Energy-Efficiency Resource Allocation Algorithm for THz-NOMA System[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220112005
Citation: YU Haizeng, YUAN Weina, SHUN Shuhuan, ZHU Yu. Energy-Efficiency Resource Allocation Algorithm for THz-NOMA System[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220112005

基于能效的THz-NOMA系统资源分配算法

doi: 10.14135/j.cnki.1006-3080.20220112005
基金项目: 国家自然科学基金资助项目(61501187)
详细信息
    作者简介:

    于海增(1995-),男,内蒙人,硕士生,研究方向为NOMA系统的无线资源管理方法。E-mail:746791740@qq.com

    通讯作者:

    袁伟娜,E-mail:wnyuan_ice@163.com

  • 中图分类号: TN929.5

Energy-Efficiency Resource Allocation Algorithm for THz-NOMA System

  • 摘要: 太赫兹(Terahertz,THz)频带与非正交多址接入(Non-Orthogonal Multiple Access,NOMA)技术相结合在实现大规模连接和超高速通信方面有着突出的优势。但是目前关于下行THz-NOMA系统的资源分配问题研究还很少,现有的方案存在算法复杂度高和系统性能低等缺点。本文以能量效率为优化目标,研究下行THz-NOMA系统的资源分配问题。首先,为了降低用户和子信道间的匹配复杂度,将该问题等效为双边匹配(Two Side Match,TSM)问题,提出了基于TSM的匹配算法。其次,针对子信道间功率分配问题的非凸性,通过将非凸函数转化为两个凸函数的差分,迭代求解凸子问题得到该问题的解。对于子信道内用户功率分配,推导出了最优功率分配的闭式解。仿真结果表明,本文提出的子信道匹配算法比开关匹配算法复杂度更低,提出的功率分配算法比传统的功率分配算法可实现更高的系统能效。

     

  • 图  1  系统模型

    Figure  1.  System model

    图  2  系统能量效率对比不同子信道匹配算法

    Figure  2.  System energy efficiency compares different subchannel allocation algorithm

    图  3  系统能量效率对比不同传输功率

    Figure  3.  System energy efficiency compares different transmission power

    图  4  系统能量效率对比不同用户数量

    Figure  4.  System energy efficiency compares different number of users

    图  5  系统能量效率对比不同${{{P_c}} \mathord{\left/ {\vphantom {{{P_c}} {{P_s}}}} \right. } {{P_s}}}$

    Figure  5.  System energy efficiency compares different${{{P_c}} \mathord{\left/ {\vphantom {{{P_c}} {{P_s}}}} \right. } {{P_s}}}$

    图  6  能量效率对比不同迭代次数

    Figure  6.  System energy efficiency compares different iterations

    表  4  模型参数设置

    Table  4.   Parameters for models

    ParameterBS RadiusAWGN PSD${B_w}$${P_s}$${P_c}$$UE$ NumberCarrier Frequency
    Value10 m−174 dBm/Hz10 GHz10 W1 W100.34 THz
    下载: 导出CSV

    表  5  匹配算法复杂度对比

    Table  5.   Comparison of matching algorithm complexity

    Algorithm NameComplexityExamples(M=10)
    Algorithm 2$O({N^2})$25 times
    Switched matching [8]$O(2PAM{N^3})$About $2 \times {10^4}$ times
    Exhaustive Search$O({{(2N)!} \mathord{\left/ {\vphantom {{(2N)!} {{2^N}}}} \right. } {{2^N}}})$$1.13 \times {10^5}$ times
    下载: 导出CSV
  • [1] 袁伟娜, 王艳龙, 刘伟婷, 等. 基于贪婪策略的低复杂度功率分配算法[J]. 华东理工大学学报(自然科学版), 2021, 47(3): 340-347.
    [2] Gao W, Chen Y, Han C, et al. Distance-adaptive absorption peak modulation (DA-APM) for terahertz covert communications[J]. IEEE Transactions on Wireless Communications, 2020, 20(3): 2064-2077.
    [3] Barh A, Pal B P, Agrawal G P, et al. Specialty fibers for terahertz generation and transmission: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2): 365-379. doi: 10.1109/JSTQE.2015.2494537
    [4] Han C, Bicen A O, Akuildiz I F. Multi-ray channel modeling and wideband characterization for wireless communications in the terahertz band[J]. IEEE Transactions on Wireless Communications, 2015, 14(5): 2402-2412. doi: 10.1109/TWC.2014.2386335
    [5] Han C, Bicen A O, Akuildiz I F, et al. Multi-wideband waveform design for distance-adaptive wireless communications in the terahertz band[J]. IEEE Transactions on Signal Processing, 2016, 64(4): 910-922.
    [6] Yadav A, Chen Q, Varsheny P K, et al. On performance comparison of multi-antenna HD-NOMA, SCMA and PD-NOMA schemes[J]. IEEE Wireless Communication Letters, 2020, 10(4): 715-719.
    [7] Zhang X, Han C, Wang X. Joint beamforming-power-bandwidth allocation in terahertz NOMA networks[C]// 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). Boston, MA, USA: IEEE, 2019: 1-9.
    [8] Hao W, Zeng M, Chu Z, et al. Energy-efficient power allocation in millimeter wave massive MIMO with non-orthogonal multiple access[J]. IEEE Wireless Communications Letters, 2017, 6(6): 782-785. doi: 10.1109/LWC.2017.2741493
    [9] Ding Z, Yang Z, Fan P, et al. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users[J]. Signal Processing Letters, IEEE. 2014, 21(12): 1501-1505.
    [10] Parida P, Das S S. Power allocation in OFDM based NOMA systems: A DC programming approach[C]// IEEE Globecom Workshops. Austin, TX, USA: IEEE. 2015: 1026-1031.
    [11] Fang F, Zhang H, Cheng J, et al. Energy-efficient resource allocation for downlink non-orthogonal multiple access network[J]. IEEE Transactions on Communications, 2016, 64(9): 3722-3732. doi: 10.1109/TCOMM.2016.2594759
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  11
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-12
  • 网络出版日期:  2022-05-27

目录

    /

    返回文章
    返回