高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于代理模型的炼厂氢网络与脱硫系统同步优化

吴依凡 夏志鹏 吉旭 周利

吴依凡, 夏志鹏, 吉旭, 周利. 基于代理模型的炼厂氢网络与脱硫系统同步优化[J]. 华东理工大学学报(自然科学版), 2023, 49(2): 176-187. doi: 10.14135/j.cnki.1006-3080.20220112002
引用本文: 吴依凡, 夏志鹏, 吉旭, 周利. 基于代理模型的炼厂氢网络与脱硫系统同步优化[J]. 华东理工大学学报(自然科学版), 2023, 49(2): 176-187. doi: 10.14135/j.cnki.1006-3080.20220112002
WU Yifan, XIA Zhipeng, JI Xu, ZHOU Li. Surrogate-Assisted Refinery Hydrogen Network Optimization with Hydrogen Sulfide Removal[J]. Journal of East China University of Science and Technology, 2023, 49(2): 176-187. doi: 10.14135/j.cnki.1006-3080.20220112002
Citation: WU Yifan, XIA Zhipeng, JI Xu, ZHOU Li. Surrogate-Assisted Refinery Hydrogen Network Optimization with Hydrogen Sulfide Removal[J]. Journal of East China University of Science and Technology, 2023, 49(2): 176-187. doi: 10.14135/j.cnki.1006-3080.20220112002

基于代理模型的炼厂氢网络与脱硫系统同步优化

doi: 10.14135/j.cnki.1006-3080.20220112002
详细信息
    作者简介:

    吴依凡(1997— ),女,湖南岳阳人,硕士生,主要研究方向为过程系统工程。E-mail:wuyifanscu@163.com

    通讯作者:

    周 利,E-mail:chezli@scu.edu.cn

  • 中图分类号: TE624

Surrogate-Assisted Refinery Hydrogen Network Optimization with Hydrogen Sulfide Removal

  • 摘要: 脱硫过程的准确建模是实现氢气分配网络和脱硫过程协同优化的基础。脱硫过程模型的简化和假设会导致结果次优,而基于过程热力学的严格过程模型会带来繁琐的计算工作量。为解决这一困境,提出了一种基于代理模型技术的炼油厂氢气网络和硫化氢脱除过程耦合优化的新策略。基于严格脱硫过程模型开发其代理模型,再将代理模型集成到氢气网络优化的数学规划模型中,以实现高效准确求解。将该方法应用于国内某炼油厂的氢网络集成,在有效控制系统中硫化氢含量的同时实现了系统优化。相比于基于简化脱硫模型的文献方法,本文方法所得结果较优,证明了该方法的有效性。

     

  • 图  1  氢气网络的超结构

    Figure  1.  State-space superstructure of the hydrogen network

    图  2  典型的MDEA脱硫工艺示意图

    Figure  2.  Diagram of a typical MDEA desulfurization process

    图  3  代理模型构建过程

    Figure  3.  Process of building the surrogate model

    图  4  案例中现有的氢气网络

    Figure  4.  Existing hydrogen network in the case

    图  5  HP-DS单元的输入和输出变量

    Figure  5.  Selected input and output variables for surrogate model fitting of HP-DS units

    图  6  LP-DS单元的输入和输出变量

    Figure  6.  Selected input and output variables for surrogate model fitting of LP-DS units

    图  7  各阶代理模型间的准确性和复杂性比较

    Figure  7.  Surrogate model comparisons in terms of accuracy and complexity of the different orders

    图  8  模型的优化结果

    Figure  8.  Optimization result of the case by the proposed model

    图  9  采用文献[25]模型得到的氢网络优化流程

    Figure  9.  Optimal flowchart of the hydrogen network using the literature model[25]

    表  1  现有氢气网络的详细流股信息

    Table  1.   Detailed hydrogen stream information of the existing hydrogen network

    ItemMake-upHigh pressure purge gas
    F/(mol·s−1)φ/%p/MPaF/(mol·s−1)φ/%p/MPa
    ${{\mathrm{H} }_{2} }$${{\mathrm{H} }_{2}\mathrm{S}}$H2H2SHydrocarbon
    KHT22.1093.800261.3087.830.9011.275
    DHT-2193.1093.8002797.5086.001.0512.955
    GHT86.8093.8002725.0086.001.0512.955
    DHT-1252.0098.2002752.6086.000.9513.055
    ItemLow pressure purge gasInlet
    F/
    (mol·s−1)
    φ/%p/MPaF/(mol·s−1)φ/%p/MPa
    H2H2SHydrocarbonN2CO${{\mathrm{H} }_{2}}$${{\mathrm{H} }_{2}\mathrm{S}}$
    KHT5.60064.401.8031.042.760183.4089.400.667
    DHT-236.0042.301.9043.824.157.831990.6087.500.857
    GHT19.8031.321.9059.885.411.491811.8086.800.947
    DHT-137.2048.891.8040.197.271.8511004.6089.100.717
    下载: 导出CSV

    表  2  案例中各单元之间的管道距离

    Table  2.   Piping distances among the units in the case

    ItemPiping distances/m
    Reformer-2Reformer-1HplantKHT-1KHT-2DHT-2GHTDHT-1PSA
    KHT1280130011500150850400700910
    DHT 250040025085010000890180480
    GHT1000140012504002508900700510
    DHT 16805804307008201807000300
    下载: 导出CSV

    表  3  预留脱硫塔和氢阱之间的管道距离

    Table  3.   Piping distances among the reserved location for the desulfurization towers and the hydrogen sinks

    ItemPiping distances/m
    HP towerLP tower
    KHT550910
    DHT-2550480
    GHT340510
    DHT-1365300
    下载: 导出CSV

    表  4  氢阱入口流股的浓度约束

    Table  4.   Concentration constraints for the inlet streams of the hydrogen sinks

    Item${\varphi}_{ {\mathrm{H} }_{2} }^{\mathrm{m}\mathrm{i}\mathrm{n} }$ /%${\varphi}_{ {\mathrm{H} }_{2}\mathrm{S} }^{\mathrm{m}\mathrm{a}\mathrm{x} }$ /%
    KHT89.40.1
    DHT-287.50.1
    GHT86.80.1
    DHT-189.10.1
    PSA0.2
    下载: 导出CSV

    表  5  HP-DS装置的输入变量范围

    Table  5.   Domain of the input variables for the HP-DS unit

    Item${F}_{ {\mathrm{H} }_{2} }^{\mathrm{h}\mathrm{i}\mathrm{n} }/({\mathrm{m} }^{3}\cdot {\mathrm{s} }^{-1})$${F}_{ {\mathrm{H} }_{2}\mathrm{S} }^{\mathrm{h}\mathrm{i}\mathrm{n} }/({\mathrm{m} }^{3}\cdot {\mathrm{s} }^{-1})$${F}_{\mathrm{Hydrocarbon} }^{\mathrm{h}\mathrm{i}\mathrm{n} }/({\mathrm{m} }^{3}\cdot {\mathrm{s} }^{-1})$${F}_{\mathrm{M}\mathrm{D}\mathrm{E}\mathrm{A} }^{\mathrm{HP} } /(\mathrm{k}\mathrm{g}\cdot {\mathrm{h} }^{-1})$
    Lower bound99201248685000
    Upper bound22322397310080000
    下载: 导出CSV

    表  6  LP-DS装置的输入变量范围

    Table  6.   Domain of the input variables for the LP-DS unit

    Item${F}_{ {\mathrm{H} }_{2} }^{\mathrm{l}\mathrm{i}\mathrm{n} } /( {\mathrm{m} }^{3}\cdot {\mathrm{s} }^{-1} )$${F}_{ {\mathrm{H} }_{2} }^{\mathrm{l}\mathrm{i}\mathrm{n} } /({\mathrm{m} }^{3}\cdot {\mathrm{s} }^{-1})$${F}_{ {\mathrm{N} }_{2} }^{\mathrm{l}\mathrm{i}\mathrm{n} } /( {\mathrm{m} }^{3}\cdot {\mathrm{s} }^{-1})$${F}_{\mathrm{Hydrocarbon} }^{\mathrm{l}\mathrm{i}\mathrm{n} } /( {\mathrm{m} }^{3}\cdot {\mathrm{s} }^{-1})$${F}_{\mathrm{C}\mathrm{O} }^{\mathrm{l}\mathrm{i}\mathrm{n} } /( {\mathrm{m} }^{3}\cdot {\mathrm{s} }^{-1})$${F}_{\mathrm{M}\mathrm{D}\mathrm{E}\mathrm{A} }^{{\rm{LP}} } /( \mathrm{k}\mathrm{g}\cdot {\mathrm{h} }^{-1})$
    Lower bound1124111494500
    Upper bound6232183623833500
    下载: 导出CSV

    表  7  文献模型和本文模型的年度成本的比较

    Table  7.   Annual costs comparison between literature model and proposed model in this paper

    ModelAnnual cost/CNY
    HPlantDesulfurizationPipingFuelElectricityTotal
    Literature[25]1.565 ×1081.193 ×1061.228 ×105−6.288 ×1072.163 ×1071.166 ×108
    This paper1.519 ×1085.099 ×1051.229 ×105−6.299 ×1072.157 ×1071.111 ×108
    下载: 导出CSV

    表  8  本文模型和文献模型关于脱硫系统的成本比较

    Table  8.   Desulfurization cost comparison between literature model and proposed model in this paper

    ModelCapital cost/CNYOperation cost/CNY
    HP-DSLP-DSHP-DSLP-DS
    Literature [25]7.141×1046.641 ×1041.029×1064.570 ×104
    This paper1.360 ×1051.360 ×1052.120 ×1052.559 ×104
    下载: 导出CSV
  • [1] SIMPSON D M. Hydrogen management in a synthetic crude refinery[J]. International Journal of Hydrogen Energy, 1984, 9(1/2): 95-99. doi: 10.1016/0360-3199(84)90036-3
    [2] ELSHERIF M, MANAN Z A, KAMSAH M Z. State-of-the-art of hydrogen management in refinery and industrial process plants[J]. Journal of Natural Gas Science and Engineering, 2015, 24: 346-356. doi: 10.1016/j.jngse.2015.03.046
    [3] MARQUES J P, MATOS H A, OLIVEIRA N M, et al. State-of-the-art review of targeting and design methodologies for hydrogen network synthesis[J]. International Journal of Hydrogen Energy , 2017, 42(1): 376-404.
    [4] ALVES J J, TOWLER G P. Analysis of refinery hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research, 2002, 41(23): 5759-5769.
    [5] LIAO Z W, ROGN G, WANG J D, et al. Rigorous algorithmic targeting methods for hydrogen networks: Part Ⅱ. Systems with one hydrogen purification unit[J]. Chemical Engineering Science, 2011, 66(5): 821-833. doi: 10.1016/j.ces.2010.10.019
    [6] HALLALE N, LIU F. Refinery hydrogen management for clean fuels production[J]. Advances in Environmental Research, 2001, 6(1): 81-98. doi: 10.1016/S1093-0191(01)00112-5
    [7] LIU F, ZHANG N. Strategy of purifier selection and integration in hydrogen networks[J]. Chemical Engineering Research & Design, 2004, 82(10): 1315-1330.
    [8] PERAMANU S, COX B G, PRUDEN B B. Economics of hydrogen recovery processes for the purification of hydroprocessor purge and off-gases[J]. International Journal of Hydrogen Energy, 1999, 24(5): 405-424. doi: 10.1016/S0360-3199(98)00105-0
    [9] LIAO Z W, RONG G, WANG J D, et al. Rigorous algorithmic targeting methods for hydrogen networks: Part Ⅰ. Systems with no hydrogen purification[J]. Chemical Engineering Science, 2011, 66(5): 813-820. doi: 10.1016/j.ces.2010.10.018
    [10] LIAO Z W, TU G, LOU J Y, et al. The influence of purifier models on hydrogen network optimization: Insights from a case study[J]. International Journal of Hydrogen Energy, 2016, 41(10): 5243-5249. doi: 10.1016/j.ijhydene.2016.01.104
    [11] GIRARDIM L, MARECHAL F, TROMEUR P. Methodology for the design of industrial hydrogen networks and the optimal placement of purification units using multi-objective optimisation techniques[J]. Computer Aided Chemical Engineering, 2006, 21: 1765-1770.
    [12] LIAO Z W, WANG J D, YANG Y R, et al. Integrating purifiers in refinery hydrogen networks: A retrofit case study[J]. Journal of Cleaner Production, 2010, 18: 233-241. doi: 10.1016/j.jclepro.2009.10.011
    [13] MA B Y, DENG C, CHEN H N, et al. Hybrid separation process of refinery off-gas toward near-zero hydrogen emission: Conceptual design and techno-economic analysis[J]. Industrial & Engineering Chemistry Research, 2020, 59(18): 8715-8727.
    [14] JIA N, ZHANG N. Multi-component optimisation for refinery hydrogen networks[J]. Energy, 2011, 36(8): 4663-4670. doi: 10.1016/j.energy.2011.03.040
    [15] UMANA B, SHOAIB A M, ZHANG N, et al. Integrating hydroprocessors in refinery hydrogen network optimisation[J]. Applied Energy, 2014, 133: 169-182. doi: 10.1016/j.apenergy.2014.06.080
    [16] UMANA B, ZHANG N, SMITH R. Development of vacuum residue hydrodesulphurization-hydrocracking models and their integration with refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2016, 55(8): 2391-2406.
    [17] WANG S H, ZHOU L, JI X, et al. A surrogate-assisted approach for the optimal synthesis of refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16798-16812.
    [18] ZHANG J, ZHU X, TOWLER G P. A simultaneous optimization strategy for overall integration in refinery planning[J]. Industrial & Engineering Chemistry Research, 2001, 40(12): 2640-2653.
    [19] KANG L X, LIANG X Q, LIU Y Z. Optimal design of inter-plant hydrogen networks with intermediate headers of purity and pressure[J]. International Journal of Hydrogen Energy, 2018, 43(34): 16638-16651. doi: 10.1016/j.ijhydene.2018.07.044
    [20] WU L, LIANG X Q, KANG L X, et al. Hydrogen network optimization by integrating impurity distributions of a fluid catalytic cracker and hydrogenation reaction kinetics[J]. Journal of Cleaner Production, 2018, 192: 542-552.
    [21] LI H R, LIAO Z W, SUN J Y, et al. Simultaneous design of hydrogen allocation networks and psa inside refineries[J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 4712-4720.
    [22] LIU X P, LIU J, DENG C, et al. Synthesis of refinery hydrogen network integrated with hydrogen turbines for power recovery[J]. Energy, 2020, 201(23): 117623. doi: 10.1016/j.energy.2020.117623
    [23] LIU G L, TANG M Y, FENG X, et al. Evolutionary design methodology for resource allocation networks with multiple impurities[J]. Industrial & Engineering Chemistry Research, 2011, 50(5): 2960-2971.
    [24] ZHANG Q, LI J, FENG X. Thermodynamic principle based hydrogen network synthesis with hydrorefining feed oil sulfur content variation for total exergy minimization[J]. Journal of Cleaner Production, 2020, 256(3): 120230. doi: 10.1016/j.jclepro.2020.120230
    [25] ZHOU L, LIAO Z W, WANG D, et al. Hydrogen sulfide removal process embedded optimization of hydrogen network[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18163-18174. doi: 10.1016/j.ijhydene.2012.08.151
    [26] YANG M B, FENG X. Simulation-based optimization and design of refinery hydrogen networks with hydrogen sulfide removal[J]. International Journal of Hydrogen Energy, 2019, 44(43): 23833-23845. doi: 10.1016/j.ijhydene.2019.07.108
    [27] PAN M, SIKORSKI J, SKROYD J, et al. Design technologies for eco-industrial parks: From unit operations to processes, plants and industrial networks[J]. Applied Energy, 2016, 175: 305-323. doi: 10.1016/j.apenergy.2016.05.019
    [28] GRACIANO E A, ROUX G A. Improvements in surrogate models for process synthesis application to water network system design[J]. Computers & Chemical Engineering, 2013, 59: 197-210.
    [29] KHALIGHI M, KARIMI I A, FAROOQ S. Comparing SiCHA and 4A zeolite for propylene/propane separation using a surrogate-based simulation/optimization approach[J]. Industrial & Engineering Chemistry Research, 2014, 53(44): 16973-16983.
    [30] KIDNAY A J, PARRISH W R, MCCARTNEY D G. Fundamentals of Natural Gas Processing[M]. [s.l.]: CRC press, 2019.
    [31] POSEY M L, ROCHELLE G T. A thermodynamic model of methyldiethanolamine-CO2-H2S-water[J]. Industrial & Engineering Chemistry Research, 1997, 36: 3944-3953.
    [32] GARUD S S, KARIMI I A, KRAFT M. Design of computer experiments: A review[J]. Computers & Chemical Engineering, 2017, 106: 71-95.
    [33] SOBOL I M. On the distribution of points in a cube and the approximate evaluation of integrals[J]. USSR Computational Mathematics and Mathematical Physics, 1967, 7: 86-112. doi: 10.1016/0041-5553(67)90144-9
    [34] MOROKOFF W J. Generating quasi-random paths for stochastic processes[J]. Society for Industrial and Applied Mathematics, 1998, 40(4): 765-788.
    [35] DIPPE A Z, WOLD E H. Antialiasing through stochastic sampling[J]. ACM SIGGRAPH Computer Graphics, 1985, 19(3): 69-78.
    [36] JIN R, CHEN W, SIMPSON T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23: 1-13. doi: 10.1007/s00158-001-0160-4
    [37] BROOK A, KENDRICK D, MEERAUS A, et al. Gams: A User’s Guide[M]. Washington, DC, USA: GAMs Development Corporation, 1988.
  • 加载中
图(9) / 表(8)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  66
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-12
  • 网络出版日期:  2022-05-26
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回