高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于代理模型的炼厂氢网络与脱硫系统同步优化

吴依凡 夏志鹏 吉旭 周利

吴依凡, 夏志鹏, 吉旭, 周利. 基于代理模型的炼厂氢网络与脱硫系统同步优化[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220112002
引用本文: 吴依凡, 夏志鹏, 吉旭, 周利. 基于代理模型的炼厂氢网络与脱硫系统同步优化[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220112002
WU Yifan, XIA Zhipeng, JI Xu, ZHOU Li. Surrogate-Assisted Refinery Hydrogen Network Optimization with Hydrogen Sulfide Removal[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220112002
Citation: WU Yifan, XIA Zhipeng, JI Xu, ZHOU Li. Surrogate-Assisted Refinery Hydrogen Network Optimization with Hydrogen Sulfide Removal[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220112002

基于代理模型的炼厂氢网络与脱硫系统同步优化

doi: 10.14135/j.cnki.1006-3080.20220112002
详细信息
    作者简介:

    吴依凡(1997— ),女,湖南岳阳人,硕士生,主要研究方向为过程系统工程。E-mail:wuyifanscu@163.com

    通讯作者:

    周利,E-mail:chezli@scu.edu.cn

  • 中图分类号: TE624

Surrogate-Assisted Refinery Hydrogen Network Optimization with Hydrogen Sulfide Removal

  • 摘要: 脱硫过程的准确建模是实现氢气分配网络和脱硫过程协同优化的基础。脱硫过程模型的简化和假设会导致结果次优,而基于过程热力学的严格过程模型会带来繁琐的计算工作量。为解决这一困境,本文提出了一种基于代理模型技术的炼油厂氢气网络和H2S脱除过程耦合优化的新策略。基于严格脱硫过程模型开发其代理模型,再将代理模型集成到氢气网络优化的数学规划模型中,以实现高效准确求解。将该方法应用于国内某炼厂的氢网络集成,在有效控制系统中H2S含量的同时实现了系统优化。相比于基于简化脱硫模型的文献方法,本文方法所得优化结果较优,证明了该方法的有效性。

     

  • 图  1  氢气网络的超结构

    Figure  1.  State-space superstructure of the hydrogen network

    图  2  典型的MDEA脱硫工艺示意图

    Figure  2.  Diagram of a typical MDEA desulfurization process

    图  3  代理模型构建过程

    Figure  3.  The process of building the surrogate model

    图  4  案例中的氢气网络

    Figure  4.  The existing hydrogen network in the case study

    图  5  HP-DS单元的输入和输出变量

    Figure  5.  The selected input and output variables for surrogate model fitting of HP-DS units

    图  6  LP-DS单元的输入和输出变量

    Figure  6.  The selected input and output variables for surrogate model fitting of LP-DS units

    图  7  一阶、二阶、三阶、四阶代理模型间的准确性和复杂性比较

    Figure  7.  Surrogate model comparisons in terms of accuracy and complexity

    图  8  模型的优化结果

    Figure  8.  Optimization result of the case by the proposed method

    图  9  文献模型得到的优化结果

    Figure  9.  Optimal flowchart of the hydrogen network with the literature model[25]

    表  1  现有氢气网络的详细流股信息

    Table  1.   Detailed hydrogen stream information of the existing hydrogen network

    ItemMake-upHigh pressure purge gas
    F/(mol·s−1)${\varphi}_{({\mathrm{H}}_{2}) }/{\text{%} }$${\varphi}_{({\mathrm{H} }_{2}\mathrm{S})}/{\text{%}}$p/MPaF/(mol·s−1)${\varphi}_{ ({\mathrm{H} }_{2} )}/{\text{%} }$${\varphi}_{ ({\mathrm{H} }_{2}\mathrm{S} )}/{\text{%} }$${\varphi}_{(\mathrm{C})}/{\text{%} }$p/MPa
    KHT22.193.80261.387.830.911.275
    DHT-2193.193.802797.5861.0512.955
    GHT86.893.802725861.0512.955
    DHT-125298.202752.6860.9513.055
    ItemLow pressure purge gasInlet
    F/(mol·s−1)${\varphi}_{({\mathrm{H} }_{2})}/{\text{%} }$${\varphi}_{({\mathrm{H} }_{2}\mathrm{S})}/{\text{%} }$${\varphi}_{(\mathrm{C})}/{\text{%} }$${\varphi}_{({\mathrm{N} }_{2})}/{\text{%} }$${\varphi}_{(\mathrm{C}\mathrm{O})}/{\text{%} }$p/MPaF/mol·s−1${\varphi}_{({\mathrm{H} }_{2})}/{\text{%} }$${\varphi}_{({\mathrm{H} }_{2}\mathrm{S})}/{\text{%} }$p/MPa
    KHT5.664.41.831.042.760183.489.40.667
    DHT-23642.31.943.824.157.831990.687.50.857
    GHT19.831.321.959.885.411.491811.886.80.947
    DHT-137.248.891.840.197.271.8511004.689.10.717
    下载: 导出CSV

    表  2  案例中各单元之间的管道距离

    Table  2.   Piping distances among the units in the base case

    ItemPiping distances/m
    Reformer-2Reformer-1HplantKHT-1KHT-2DHT-2GHTDHT-1PSA
    KHT1280130011500150850400700910
    DHT 250040025085010000890180480
    GHT1000140012504002508900700510
    DHT 16805804307008201807000300
    下载: 导出CSV

    表  3  预留脱硫塔和氢阱之间的管道距离

    Table  3.   Piping distances among the reserved location for the desulfurization towers and the hydrogen sinks

    ItemPiping distances/m
    HP towerLP tower
    KHT550910
    DHT-2550480
    GHT340510
    DHT-1365300
    下载: 导出CSV

    表  4  氢阱入口流股的浓度约束

    Table  4.   Concentration constraints for the inlet streams of the hydrogen sinks

    Item$ {\varphi}_{{\mathrm{H}}_{2}}^{\mathrm{M}\mathrm{i}\mathrm{n}} $/%$ {\varphi}_{{\mathrm{H}}_{2}\mathrm{S}}^{\mathrm{M}\mathrm{a}\mathrm{x}} $/%
    KHT89.40.1
    DHT-287.50.1
    GHT86.80.1
    DHT-189.10.1
    PSA0.2
    下载: 导出CSV

    表  5  HP-DS装置的输入变量范围

    Table  5.   Domain of the input variables for the HP-DS unit

    Item${F}_{ {\mathrm{H} }_{2} }^{\mathrm{h}\mathrm{i}\mathrm{n} }/({\mathrm{N}\mathrm{m} }^{3}\cdot {\mathrm{s} }^{-1})$$ {F}_{{\mathrm{H}}_{2}\mathrm{S}}^{\mathrm{h}\mathrm{i}\mathrm{n}}/({\mathrm{N}\mathrm{m}}^{3}\cdot {\mathrm{s}}^{-1}) $$ {F}_{\mathrm{C}}^{\mathrm{h}\mathrm{i}\mathrm{n}}/({\mathrm{N}\mathrm{m}}^{3}\cdot {\mathrm{s}}^{-1}) $$ {F}_{\mathrm{m}\mathrm{d}\mathrm{e}\mathrm{a}}^{\mathrm{h}} /(\mathrm{k}\mathrm{g}\cdot {\mathrm{h}}^{-1}) $
    Lower bound99201248685000
    Upper bound22322397310080000
    下载: 导出CSV

    表  6  LP-DS装置的输入变量范围

    Table  6.   Domain of the input variables for the LP-DS unit

    Item$ {F}_{{\mathrm{H}}_{2}}^{\mathrm{l}\mathrm{i}\mathrm{n}} /( {\mathrm{N}\mathrm{m}}^{3}\cdot {\mathrm{s}}^{-1} )$$ {F}_{{\mathrm{H}}_{2}}^{\mathrm{l}\mathrm{i}\mathrm{n}} /({\mathrm{N}\mathrm{m}}^{3}\cdot {\mathrm{s}}^{-1}) $$ {F}_{{\mathrm{N}}_{2}}^{\mathrm{l}\mathrm{i}\mathrm{n}} /( {\mathrm{N}\mathrm{m}}^{3}\cdot {\mathrm{s}}^{-1}) $$ {F}_{\mathrm{C}}^{\mathrm{l}\mathrm{i}\mathrm{n}} /( {\mathrm{N}\mathrm{m}}^{3}\cdot {\mathrm{s}}^{-1}) $$ {F}_{\mathrm{C}\mathrm{O}}^{\mathrm{l}\mathrm{i}\mathrm{n}} /( {\mathrm{N}\mathrm{m}}^{3}\cdot {\mathrm{s}}^{-1}) $$ {F}_{\mathrm{m}\mathrm{d}\mathrm{e}\mathrm{a}}^{\mathrm{l}} /( \mathrm{k}\mathrm{g}\cdot {\mathrm{h}}^{-1}) $
    Lower bound1124111494500
    Upper bound6232183623833500
    下载: 导出CSV

    表  9  文献模型和本文模型的年度成本的比较

    Table  9.   Comparison of the literature model and the proposed model in regard to the annual costs

    ModelAnnual cost/CNY
    HPlantDesulfurizationPipingFuelElectricityTotal
    Literature
    [25]
    1.565 ×1081.193 ×1061.228 ×105−6.288 ×1072.163 ×1071.166 ×108
    Proposed model1.519 ×1085.099 ×1051.229 ×105−6.299 ×1072.157 ×1071.111 ×108
    下载: 导出CSV

    表  10  本文模型和文献模型关于脱硫系统的成本比较

    Table  10.   Comparison of desulfurization cost between the literature model and the proposed model

    ModelCost/CNY
    HP-DS
    capital cost
    HP-DS
    operation cost
    LP-DS
    capital cost
    LP-DS
    operation cost
    Literature [25]7.141×1041.029×1066.641 ×1044.570 ×104
    Proposed model1.360 ×1052.120 ×1051.360 ×1052.559 ×104
    下载: 导出CSV
    符号说明
    ab成本费用系数
    C成本
    CP压缩机集合
    CV热值
    D管道直径
    DS脱硫单元集合(DS=1表示高分气脱硫单元,DS=2表示低分气脱硫单元)
    ER美元兑换人民币汇率
    F氢流股流量
    I氢源集合
    J氢阱集合
    K氢阱集合(同I)
    L管道长度
    N流股组分集合
    T塔板数
    P压力
    PF提纯装置集合
    POW压缩机功率
    R变压吸附装置氢气回收率
    t运行时间
    下载: 导出CSV
    TAC   年度总费用
    UP单价
    Y氢流股组分体积分数
    ZJ年化系数
    下角标:
    i氢源
    j氢阱
    k氢阱(同j
    cp压缩机
    pf提纯装置
    psa变压吸附装置
    comp压缩机(同cp)
    elec
    heat热量
    n氢流股组分
    fuel燃料
    ds脱硫装置
    mdea脱硫剂
    pipe管道
    hmHP-DS消耗的mdea
    lmLP-DS消耗的mdea
    上角标:
    Max最大
    Min最小
    HP高分气
    in进口
    LP低分气
    out出口
    P产品流股
    R残余气流股
    下载: 导出CSV
  • [1] SIMPSON D M. Hydrogen management in a synthetic crude refinery[J]. International Journal of Hydrogen Energy, 1984, 9: 95-99. doi: 10.1016/0360-3199(84)90036-3
    [2] ELSHERIF M, MANAN Z A, KAMSAH M Z. State-of-the-art of hydrogen management in refinery and industrial process plants[J]. Journal of Natural Gas Science and Engineering, 2015, 24: 346-356. doi: 10.1016/j.jngse.2015.03.046
    [3] MARQUES J P, MATOS H A, OLIVEIRA N M, et al. State-of-the-art review of targeting and design methodologies for hydrogen network synthesis[J], International Journal of Hydrogen Energy , 2017, 42: 376-404.
    [4] ALVES J J, TOWLER G P. Analysis of refinery hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research, 2002, 41: 5759-5769.
    [5] LIAO Z W, ROGN G, WANG J D, et al. Rigorous algorithmic targeting methods for hydrogen networks: part Ⅱ. Systems with one hydrogen purification unit[J]. Chemical Engineering Science, 2011, 66: 821-833. doi: 10.1016/j.ces.2010.10.019
    [6] HALLALE N, LIU F. Refinery hydrogen management for clean fuels production[J]. Advances in Environmental Research, 2001, 6: 81-98. doi: 10.1016/S1093-0191(01)00112-5
    [7] LIU F, ZHANG N. Strategy of purifier selection and integration in hydrogen networks[J]. Chemical Engineering Research & Design, 2004, 82: 1315-1330.
    [8] PERAMANU S, COX B G, PRUDEN B B. Economics of hydrogen recovery processes for the purification of hydroprocessor purge and off-gases[J]. International Journal of Hydrogen Energy, 1999, 24: 405-424. doi: 10.1016/S0360-3199(98)00105-0
    [9] LIAO Z W, RONG G, WANG J D, et al. Rigorous algorithmic targeting methods for hydrogen networks: Part Ⅰ: Systems with no hydrogen purification[J]. Chemical Engineering Science, 2011, 66: 813-820. doi: 10.1016/j.ces.2010.10.018
    [10] LIAO Z W, TU G, LOU J Y, et al. The influence of purifier models on hydrogen network optimization: Insights from a case study[J]. International Journal of Hydrogen Energy, 2016, 41: 5243-5249. doi: 10.1016/j.ijhydene.2016.01.104
    [11] GIRARDIM L, MARECHAL F, TROMEUR P. Methodology for the design of industrial hydrogen networks and the optimal placement of purification units using multi-objective optimisation techniques[J]. Computer Aided Chemical Engineering, 2006, 21: 1765-1770.
    [12] LIAO Z W, WANG J D, YANG Y R, et al. Integrating purifiers in refinery hydrogen networks: A retrofit case study[J]. Journal of Cleaner Production, 2010, 18: 233-241. doi: 10.1016/j.jclepro.2009.10.011
    [13] MA B Y, DENG C, CHEN H N, et al. Hybrid separation process of refinery off-gas toward near-zero hydrogen emission: Conceptual design and techno-economic analysis[J]. Industrial & Engineering Chemistry Research, 2020, 59: 8715-8727.
    [14] JIA N, ZHANG N. Multi-component optimisation for refinery hydrogen networks[J]. Energy, 2011, 36: 4663-4670. doi: 10.1016/j.energy.2011.03.040
    [15] UMANA B, SHOAIB A M, ZHANG N, et al. Integrating hydroprocessors in refinery hydrogen network optimisation[J]. Applied Energy, 2014, 133: 169-182. doi: 10.1016/j.apenergy.2014.06.080
    [16] UMANA B, ZHANG N, SMITH R. Development of vacuum residue hydrodesulphurization-hydrocracking models and their integration with refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2016, 55: 2391-2406.
    [17] WANG S H, ZHOU L, JI X, et al. A surrogate-assisted approach for the optimal synthesis of refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2019, 58: 16798-16812.
    [18] ZHANG J, ZHU X, TOWLER G P. A simultaneous optimization strategy for overall integration in refinery planning[J]. Industrial & Engineering Chemistry Research, 2001, 40: 2640-2653.
    [19] KANG L X, LIANG X Q, LIU Y Z. Optimal design of inter-plant hydrogen networks with intermediate headers of purity and pressure[J]. International Journal of Hydrogen Energy, 2018, 43: 16638-16651. doi: 10.1016/j.ijhydene.2018.07.044
    [20] WU L, LIANG X Q, KANG L X, et al. Saffron. Hydrogen network optimization by integrating impurity distributions of a fluid catalytic cracker and hydrogenation reaction kinetics[J]. Journal of Cleaner Production, 2018, 192: 542 - 552.
    [21] LI H R, LIAO Z W, SUN J Y, et al. Simultaneous design of hydrogen allocation networks and psa inside refineries[J]. Industrial & Engineering Chemistry Research, 2020, 59: 4712-4720.
    [22] LIU X P, LIU J, DENG C, et al. Synthesis of refinery hydrogen network integrated with hydrogen turbines for power recovery[J]. Energy, 2020, 201: 117623. doi: 10.1016/j.energy.2020.117623
    [23] LIU G L, TANG M Y, FENG X, et al. Evolutionary design methodology for resource allocation networks with multiple impurities[J]. Industrial & Engineering Chemistry Research, 2011, 50: 2960-2971.
    [24] ZHANG Q, LI J, FENG X. Thermodynamic principle based hydrogen network synthesis with hydrorefining feed oil sulfur content variation for total exergy minimization[J]. Journal of Cleaner Production, 2020, 256: 120230. doi: 10.1016/j.jclepro.2020.120230
    [25] ZHOU L, LIAO Z W, WANG D, et al. Hydrogen sulfide removal process embedded optimization of hydrogen network[J]. International Journal of Hydrogen Energy, 2012, 37: 18163-18174. doi: 10.1016/j.ijhydene.2012.08.151
    [26] YANG M B, FENG X. Simulation-based optimization and design of refinery hydrogen networks with hydrogen sulfide removal[J]. International Journal of Hydrogen Energy, 2019, 44: 23833-23845. doi: 10.1016/j.ijhydene.2019.07.108
    [27] PAN M, SIKORSKI J, SKROYD J, et al. Design technologies for eco-industrial parks: From unit operations to processes, plants and industrial networks[J]. Applied Energy, 2016, 175: 305-323. doi: 10.1016/j.apenergy.2016.05.019
    [28] GRACIANO E A, ROUX G A. Improvements in surrogate models for process synthesis application to water network system design[J]. Computers & Chemical Engineering, 2013, 59: 197-210.
    [29] KHALIGHI M, KARIMI I A, FAROOQ S. Comparing sicha and 4a zeolite for propylene/propane separation using a surrogate-based simulation/optimization approach[J]. Industrial & Engineering Chemistry Research, 2014, 53: 16973-16983.
    [30] KIDNAY A J, PARRISH W R, MCCARTNEY D G. Fundamentals of Natural Gas Processing[M]. [S. l.]: CRC press, 2019.
    [31] POSEY M L, ROCHELLE G T. A thermodynamic model of methyldiethanolamine-CO2-H2S-water[J]. Industrial & Engineering Chemistry Research, 1997, 36: 3944-3953.
    [32] GARUD S S, KARIMI I A, KRAFT M. Design of computer experiments: A review[J]. Computers & Chemical Engineering, 2017, 106: 71-95.
    [33] SOBOL I M. On the distribution of points in a cube and the approximate evaluation of integrals[J]. USSR Computational Mathematics and Mathematical Physics, 1967, 7: 86-112. doi: 10.1016/0041-5553(67)90144-9
    [34] MOROKOFF W J. Generating quasi-random paths for stochastic processes[J]. Society for Industrial and Applied Mathematics, 1998, 40: 765-788.
    [35] DIPPE A Z, WOLD E H. Antialiasing through stochastic sampling[C]// Proceedings of the 12st Annual Conference on Computer Graphics and Interactive Techniques, [S. l.]: [s. n.]: 1985.
    [36] JIN T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23: 1-13. doi: 10.1007/s00158-001-0160-4
    [37] BROOK A, KENDRICK D A A, Brook D. Gams: A user’s guide[J], ACM Signum Newsletter , 1988, 23: 10-11.
  • 加载中
图(9) / 表(10)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  14
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-12
  • 网络出版日期:  2022-05-26

目录

    /

    返回文章
    返回