Surrogate-Assisted Refinery Hydrogen Network Optimization with Hydrogen Sulfide Removal
-
摘要: 脱硫过程的准确建模是实现氢气分配网络和脱硫过程协同优化的基础。脱硫过程模型的简化和假设会导致结果次优,而基于过程热力学的严格过程模型会带来繁琐的计算工作量。为解决这一困境,提出了一种基于代理模型技术的炼油厂氢气网络和硫化氢脱除过程耦合优化的新策略。基于严格脱硫过程模型开发其代理模型,再将代理模型集成到氢气网络优化的数学规划模型中,以实现高效准确求解。将该方法应用于国内某炼油厂的氢网络集成,在有效控制系统中硫化氢含量的同时实现了系统优化。相比于基于简化脱硫模型的文献方法,本文方法所得结果较优,证明了该方法的有效性。Abstract: In order to achieve the collaborative optimization of the hydrogen distribution network and the desulfurization process, it is necessary to accurately model the desulfurization process. While the simplification of the desulfurization process model compromises the accuracy of the results, a strict process model based on process thermodynamics is disadvantaged due to its inherently high complicacy. To solve this dilemma, this paper proposes a new strategy for coupling optimization of the hydrogen distribution network and the hydrogen sulfide removal process in the refinery. Surrogate models are developed as approximations to the rigorous desulfurization processes. The surrogate model is then integrated into the mathematical programming model for hydrogen network optimization. The proposed method is applied to a case study taken from a refinery in Western China. The result suggests that the proposed model can effectively reduce the H2S content in the system. Moreover, a comparison between the proposed method and the prerious literary work based on simplified desulfurization models proves that our model can more practically obtain optimization results.
-
表 1 现有氢气网络的详细流股信息
Table 1. Detailed hydrogen stream information of the existing hydrogen network
Item Make-up High pressure purge gas F/(mol·s−1) φ/% p/MPa F/(mol·s−1) φ/% p/MPa ${{\mathrm{H} }_{2} }$ ${{\mathrm{H} }_{2}\mathrm{S}}$ H2 H2S Hydrocarbon KHT 22.10 93.80 0 2 61.30 87.83 0.90 11.27 5 DHT-2 193.10 93.80 0 2 797.50 86.00 1.05 12.95 5 GHT 86.80 93.80 0 2 725.00 86.00 1.05 12.95 5 DHT-1 252.00 98.20 0 2 752.60 86.00 0.95 13.05 5 Item Low pressure purge gas Inlet F/
(mol·s−1)φ/% p/MPa F/(mol·s−1) φ/% p/MPa H2 H2S Hydrocarbon N2 CO ${{\mathrm{H} }_{2}}$ ${{\mathrm{H} }_{2}\mathrm{S}}$ KHT 5.600 64.40 1.80 31.04 2.76 0 1 83.40 89.40 0.66 7 DHT-2 36.00 42.30 1.90 43.82 4.15 7.83 1 990.60 87.50 0.85 7 GHT 19.80 31.32 1.90 59.88 5.41 1.49 1 811.80 86.80 0.94 7 DHT-1 37.20 48.89 1.80 40.19 7.27 1.85 1 1004.60 89.10 0.71 7 表 2 案例中各单元之间的管道距离
Table 2. Piping distances among the units in the case
Item Piping distances/m Reformer-2 Reformer-1 Hplant KHT-1 KHT-2 DHT-2 GHT DHT-1 PSA KHT 1280 1300 1150 0 150 850 400 700 910 DHT 2 500 400 250 850 1000 0 890 180 480 GHT 1000 1400 1250 400 250 890 0 700 510 DHT 1 680 580 430 700 820 180 700 0 300 表 3 预留脱硫塔和氢阱之间的管道距离
Table 3. Piping distances among the reserved location for the desulfurization towers and the hydrogen sinks
Item Piping distances/m HP tower LP tower KHT 550 910 DHT-2 550 480 GHT 340 510 DHT-1 365 300 表 4 氢阱入口流股的浓度约束
Table 4. Concentration constraints for the inlet streams of the hydrogen sinks
Item ${\varphi}_{ {\mathrm{H} }_{2} }^{\mathrm{m}\mathrm{i}\mathrm{n} }$ /% ${\varphi}_{ {\mathrm{H} }_{2}\mathrm{S} }^{\mathrm{m}\mathrm{a}\mathrm{x} }$ /% KHT 89.4 0.1 DHT-2 87.5 0.1 GHT 86.8 0.1 DHT-1 89.1 0.1 PSA — 0.2 表 5 HP-DS装置的输入变量范围
Table 5. Domain of the input variables for the HP-DS unit
Item ${F}_{ {\mathrm{H} }_{2} }^{\mathrm{h}\mathrm{i}\mathrm{n} }/({\mathrm{m} }^{3}\cdot {\mathrm{s} }^{-1})$ ${F}_{ {\mathrm{H} }_{2}\mathrm{S} }^{\mathrm{h}\mathrm{i}\mathrm{n} }/({\mathrm{m} }^{3}\cdot {\mathrm{s} }^{-1})$ ${F}_{\mathrm{Hydrocarbon} }^{\mathrm{h}\mathrm{i}\mathrm{n} }/({\mathrm{m} }^{3}\cdot {\mathrm{s} }^{-1})$ ${F}_{\mathrm{M}\mathrm{D}\mathrm{E}\mathrm{A} }^{\mathrm{HP} } /(\mathrm{k}\mathrm{g}\cdot {\mathrm{h} }^{-1})$ Lower bound 9920 124 868 5000 Upper bound 22322 397 3100 80000 表 6 LP-DS装置的输入变量范围
Table 6. Domain of the input variables for the LP-DS unit
Item ${F}_{ {\mathrm{H} }_{2} }^{\mathrm{l}\mathrm{i}\mathrm{n} } /( {\mathrm{m} }^{3}\cdot {\mathrm{s} }^{-1} )$ ${F}_{ {\mathrm{H} }_{2} }^{\mathrm{l}\mathrm{i}\mathrm{n} } /({\mathrm{m} }^{3}\cdot {\mathrm{s} }^{-1})$ ${F}_{ {\mathrm{N} }_{2} }^{\mathrm{l}\mathrm{i}\mathrm{n} } /( {\mathrm{m} }^{3}\cdot {\mathrm{s} }^{-1})$ ${F}_{\mathrm{Hydrocarbon} }^{\mathrm{l}\mathrm{i}\mathrm{n} } /( {\mathrm{m} }^{3}\cdot {\mathrm{s} }^{-1})$ ${F}_{\mathrm{C}\mathrm{O} }^{\mathrm{l}\mathrm{i}\mathrm{n} } /( {\mathrm{m} }^{3}\cdot {\mathrm{s} }^{-1})$ ${F}_{\mathrm{M}\mathrm{D}\mathrm{E}\mathrm{A} }^{{\rm{LP}} } /( \mathrm{k}\mathrm{g}\cdot {\mathrm{h} }^{-1})$ Lower bound 112 4 11 149 4 500 Upper bound 623 21 83 623 83 3500 表 7 文献模型和本文模型的年度成本的比较
Table 7. Annual costs comparison between literature model and proposed model in this paper
Model Annual cost/CNY HPlant Desulfurization Piping Fuel Electricity Total Literature[25] 1.565 ×108 1.193 ×106 1.228 ×105 −6.288 ×107 2.163 ×107 1.166 ×108 This paper 1.519 ×108 5.099 ×105 1.229 ×105 −6.299 ×107 2.157 ×107 1.111 ×108 表 8 本文模型和文献模型关于脱硫系统的成本比较
Table 8. Desulfurization cost comparison between literature model and proposed model in this paper
Model Capital cost/CNY Operation cost/CNY HP-DS LP-DS HP-DS LP-DS Literature [25] 7.141×104 6.641 ×104 1.029×106 4.570 ×104 This paper 1.360 ×105 1.360 ×105 2.120 ×105 2.559 ×104 -
[1] SIMPSON D M. Hydrogen management in a synthetic crude refinery[J]. International Journal of Hydrogen Energy, 1984, 9(1/2): 95-99. doi: 10.1016/0360-3199(84)90036-3 [2] ELSHERIF M, MANAN Z A, KAMSAH M Z. State-of-the-art of hydrogen management in refinery and industrial process plants[J]. Journal of Natural Gas Science and Engineering, 2015, 24: 346-356. doi: 10.1016/j.jngse.2015.03.046 [3] MARQUES J P, MATOS H A, OLIVEIRA N M, et al. State-of-the-art review of targeting and design methodologies for hydrogen network synthesis[J]. International Journal of Hydrogen Energy , 2017, 42(1): 376-404. [4] ALVES J J, TOWLER G P. Analysis of refinery hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research, 2002, 41(23): 5759-5769. [5] LIAO Z W, ROGN G, WANG J D, et al. Rigorous algorithmic targeting methods for hydrogen networks: Part Ⅱ. Systems with one hydrogen purification unit[J]. Chemical Engineering Science, 2011, 66(5): 821-833. doi: 10.1016/j.ces.2010.10.019 [6] HALLALE N, LIU F. Refinery hydrogen management for clean fuels production[J]. Advances in Environmental Research, 2001, 6(1): 81-98. doi: 10.1016/S1093-0191(01)00112-5 [7] LIU F, ZHANG N. Strategy of purifier selection and integration in hydrogen networks[J]. Chemical Engineering Research & Design, 2004, 82(10): 1315-1330. [8] PERAMANU S, COX B G, PRUDEN B B. Economics of hydrogen recovery processes for the purification of hydroprocessor purge and off-gases[J]. International Journal of Hydrogen Energy, 1999, 24(5): 405-424. doi: 10.1016/S0360-3199(98)00105-0 [9] LIAO Z W, RONG G, WANG J D, et al. Rigorous algorithmic targeting methods for hydrogen networks: Part Ⅰ. Systems with no hydrogen purification[J]. Chemical Engineering Science, 2011, 66(5): 813-820. doi: 10.1016/j.ces.2010.10.018 [10] LIAO Z W, TU G, LOU J Y, et al. The influence of purifier models on hydrogen network optimization: Insights from a case study[J]. International Journal of Hydrogen Energy, 2016, 41(10): 5243-5249. doi: 10.1016/j.ijhydene.2016.01.104 [11] GIRARDIM L, MARECHAL F, TROMEUR P. Methodology for the design of industrial hydrogen networks and the optimal placement of purification units using multi-objective optimisation techniques[J]. Computer Aided Chemical Engineering, 2006, 21: 1765-1770. [12] LIAO Z W, WANG J D, YANG Y R, et al. Integrating purifiers in refinery hydrogen networks: A retrofit case study[J]. Journal of Cleaner Production, 2010, 18: 233-241. doi: 10.1016/j.jclepro.2009.10.011 [13] MA B Y, DENG C, CHEN H N, et al. Hybrid separation process of refinery off-gas toward near-zero hydrogen emission: Conceptual design and techno-economic analysis[J]. Industrial & Engineering Chemistry Research, 2020, 59(18): 8715-8727. [14] JIA N, ZHANG N. Multi-component optimisation for refinery hydrogen networks[J]. Energy, 2011, 36(8): 4663-4670. doi: 10.1016/j.energy.2011.03.040 [15] UMANA B, SHOAIB A M, ZHANG N, et al. Integrating hydroprocessors in refinery hydrogen network optimisation[J]. Applied Energy, 2014, 133: 169-182. doi: 10.1016/j.apenergy.2014.06.080 [16] UMANA B, ZHANG N, SMITH R. Development of vacuum residue hydrodesulphurization-hydrocracking models and their integration with refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2016, 55(8): 2391-2406. [17] WANG S H, ZHOU L, JI X, et al. A surrogate-assisted approach for the optimal synthesis of refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16798-16812. [18] ZHANG J, ZHU X, TOWLER G P. A simultaneous optimization strategy for overall integration in refinery planning[J]. Industrial & Engineering Chemistry Research, 2001, 40(12): 2640-2653. [19] KANG L X, LIANG X Q, LIU Y Z. Optimal design of inter-plant hydrogen networks with intermediate headers of purity and pressure[J]. International Journal of Hydrogen Energy, 2018, 43(34): 16638-16651. doi: 10.1016/j.ijhydene.2018.07.044 [20] WU L, LIANG X Q, KANG L X, et al. Hydrogen network optimization by integrating impurity distributions of a fluid catalytic cracker and hydrogenation reaction kinetics[J]. Journal of Cleaner Production, 2018, 192: 542-552. [21] LI H R, LIAO Z W, SUN J Y, et al. Simultaneous design of hydrogen allocation networks and psa inside refineries[J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 4712-4720. [22] LIU X P, LIU J, DENG C, et al. Synthesis of refinery hydrogen network integrated with hydrogen turbines for power recovery[J]. Energy, 2020, 201(23): 117623. doi: 10.1016/j.energy.2020.117623 [23] LIU G L, TANG M Y, FENG X, et al. Evolutionary design methodology for resource allocation networks with multiple impurities[J]. Industrial & Engineering Chemistry Research, 2011, 50(5): 2960-2971. [24] ZHANG Q, LI J, FENG X. Thermodynamic principle based hydrogen network synthesis with hydrorefining feed oil sulfur content variation for total exergy minimization[J]. Journal of Cleaner Production, 2020, 256(3): 120230. doi: 10.1016/j.jclepro.2020.120230 [25] ZHOU L, LIAO Z W, WANG D, et al. Hydrogen sulfide removal process embedded optimization of hydrogen network[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18163-18174. doi: 10.1016/j.ijhydene.2012.08.151 [26] YANG M B, FENG X. Simulation-based optimization and design of refinery hydrogen networks with hydrogen sulfide removal[J]. International Journal of Hydrogen Energy, 2019, 44(43): 23833-23845. doi: 10.1016/j.ijhydene.2019.07.108 [27] PAN M, SIKORSKI J, SKROYD J, et al. Design technologies for eco-industrial parks: From unit operations to processes, plants and industrial networks[J]. Applied Energy, 2016, 175: 305-323. doi: 10.1016/j.apenergy.2016.05.019 [28] GRACIANO E A, ROUX G A. Improvements in surrogate models for process synthesis application to water network system design[J]. Computers & Chemical Engineering, 2013, 59: 197-210. [29] KHALIGHI M, KARIMI I A, FAROOQ S. Comparing SiCHA and 4A zeolite for propylene/propane separation using a surrogate-based simulation/optimization approach[J]. Industrial & Engineering Chemistry Research, 2014, 53(44): 16973-16983. [30] KIDNAY A J, PARRISH W R, MCCARTNEY D G. Fundamentals of Natural Gas Processing[M]. [s.l.]: CRC press, 2019. [31] POSEY M L, ROCHELLE G T. A thermodynamic model of methyldiethanolamine-CO2-H2S-water[J]. Industrial & Engineering Chemistry Research, 1997, 36: 3944-3953. [32] GARUD S S, KARIMI I A, KRAFT M. Design of computer experiments: A review[J]. Computers & Chemical Engineering, 2017, 106: 71-95. [33] SOBOL I M. On the distribution of points in a cube and the approximate evaluation of integrals[J]. USSR Computational Mathematics and Mathematical Physics, 1967, 7: 86-112. doi: 10.1016/0041-5553(67)90144-9 [34] MOROKOFF W J. Generating quasi-random paths for stochastic processes[J]. Society for Industrial and Applied Mathematics, 1998, 40(4): 765-788. [35] DIPPE A Z, WOLD E H. Antialiasing through stochastic sampling[J]. ACM SIGGRAPH Computer Graphics, 1985, 19(3): 69-78. [36] JIN R, CHEN W, SIMPSON T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23: 1-13. doi: 10.1007/s00158-001-0160-4 [37] BROOK A, KENDRICK D, MEERAUS A, et al. Gams: A User’s Guide[M]. Washington, DC, USA: GAMs Development Corporation, 1988. -