高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于夹点技术考虑含有复杂相变及碳排放的换热网络综合

郑鑫 李鼎昊 毛凯田 展益彬 王璟德 孙巍

郑鑫, 李鼎昊, 毛凯田, 展益彬, 王璟德, 孙巍. 基于夹点技术考虑含有复杂相变及碳排放的换热网络综合[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220107004
引用本文: 郑鑫, 李鼎昊, 毛凯田, 展益彬, 王璟德, 孙巍. 基于夹点技术考虑含有复杂相变及碳排放的换热网络综合[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220107004
ZHENG Xin, LI Dinghao, MAO Kaitian, ZHAN Yibin, WANG Jingde, SUN Wei. Heat Exchanger Network Synthesis with Complex Phase Changes under the Consideration of Carbon Emissions based on Pinch Point Method[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220107004
Citation: ZHENG Xin, LI Dinghao, MAO Kaitian, ZHAN Yibin, WANG Jingde, SUN Wei. Heat Exchanger Network Synthesis with Complex Phase Changes under the Consideration of Carbon Emissions based on Pinch Point Method[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220107004

基于夹点技术考虑含有复杂相变及碳排放的换热网络综合

doi: 10.14135/j.cnki.1006-3080.20220107004
详细信息
    作者简介:

    郑鑫(1997—),女,山西人,硕士生,主要研究方向:过程系统工程,E-mail:2020200069@mail.buct.edu.cn

    通讯作者:

    王璟德,jingdewang@mail.buct.edu.cn,

  • 中图分类号: TQ021.8

Heat Exchanger Network Synthesis with Complex Phase Changes under the Consideration of Carbon Emissions based on Pinch Point Method

  • 摘要: 以某乙烯裂解工艺中6股用公用工程换热的物流为对象,存在混合物的复杂相变的物流,根据其热负荷和物料特性把相变段折算成一股或多股恒定热容流率的物流,确定温度区间,再用问题表确定夹点。传统夹点法确定最小传热温差△Tmin为11℃,加入碳排放目标函数后确定△Tmin为9℃,夹点热物流温度为88.3℃,冷物流温度为79.3℃,此时该换热网络所需的最小热公用工程为12727.27 kW,最小冷公用工程为38719.59 kW。根据夹点技术的设计原则和物流匹配准则,可得到能量最优的换热网络结构。

     

  • 图  1  H1温焓图

    Figure  1.  Temperature-enthalpy diagram for stream H1

    图  2  显示夹点的复合曲线

    Figure  2.  Composite curves with pinch

    图  3  温度区间图

    Figure  3.  Temperature interval chart

    图  4  随△Tmin变化的不同费用函数

    Figure  4.  Costs change vsTmin

    图  5  传统夹点法年度总费用与△Tmin关系图

    Figure  5.  Total annual cost vs. △Tmin

    图  6  含碳排放目标年度总费用与△Tmin关系图

    Figure  6.  Total annual cost with the consideration of carbon emission

    图  7  能量最优换热网络

    Figure  7.  Synthesis of Heat Exchanger Network in terms with utility cost

    表  1  H1流股信息表

    Table  1.   Information Sheet for stream H1

    Stream labelTin/℃Tout/℃Heat capacity flow rate/(kW·℃−1)
    H188.250.9293.82
    50.938.0639.28
    下载: 导出CSV

    表  2  其余物流信息表

    Table  2.   Information table for other streams

    Stream labelTin/℃Tout/℃Heat capacity flow rate/(kW·℃−1)
    H288.453.0292.57
    53.038.0503.88
    H388.357.4294.80
    57.438.0456.11
    C142.8120.1312.66
    C237.950.0276.57
    C337.551.4115.20
    下载: 导出CSV

    表  3  问题表

    Table  3.   Problem table

    SNDKThe outside hot source input the quantity of heat
    NoYes
    /kWIK/kWOK/kWIK/kWOK/kW
    SN112756.530−12756.5312756.530
    SN2−15776.81−12756.533020.28015776.81
    SN3−719.943020.283740.2215776.8116496.75
    SN4−316.623740.224056.8416496.7516813.37
    SN5−1301.574056.845358.4116813.3718114.94
    SN6−1199.315358.416557.7218114.9419314.25
    SN7−5491.696557.7212049.4119314.2524805.94
    SN8−13916.6512049.4125963.0624805.9438719.59
    下载: 导出CSV

    表  4  不同△Tmin下结果信息表

    Table  4.   Cost saving achieved by heat integration under different $\varDelta T_{\rm{{min}}}$

    Tmin/℃Pinch/℃Hot Utility/kWCold Utility/kWEnergy saving potential
    Hot utilityCold utility
    585.811476.6337439.4760.58%32.03%
    685.311818.5037642.2359.41%31.66%
    784.812131.2037943.3758.33%31.11%
    884.312414.6138377.8257.37%30.33%
    983.812727.2738719.5956.29%29.71%
    1083.313039.9339002.7755.22%29.19%
    1182.813381.8539312.0354.05%28.63%
    1282.313694.5139506.6752.98%28.28%
    1381.814007.1739750.2451.81%27.84%
    1481.314319.8340558.7050.83%26.38%
    下载: 导出CSV

    表  5  费用相关参数表

    Table  5.   Cost-related parameters

    Parameters Heat exchanger unit area cost CA/USD·a−1 Unit hot utility cost CHU/USD·kW−1·a−1 Unit cold utility cost CCU/USD·kW−1·a−1 Heat transfer coefficient between process steams KHC/W·m−2·K−1 Heat transfer coefficient between hot utilities and
    streams KHU/W·m−2·K−1
    Heat transfer coefficient between cold utilities and streams KCU/W*m-2·K−1
    Value 60 100 15 250 540 400
    下载: 导出CSV

    表  6  费用表

    Table  6.   Cost details

    Tmin/℃Investment costs/(USD·a−1Utilities costs/(USD·a−1Total annual cost/(USD·a−1
    51196046.861709255.092905301.95
    61046183.211746483.482792666.694
    7939406.521782270.582721677.099
    8859665.821817128.392676794.21
    9798614.791853520.892652135.68
    10750618.901889034.592639653.49
    11711523.791927865.592639389.27
    12679833.451962051.082641884.53
    13653313.021996970.602650283.62
    14631144.592040363.562671508.15
    下载: 导出CSV

    表  7  碳排放费用参数表

    Table  7.   Parameters in cost calculation for carbon emission

    Parameters NHV/kJ·kg−1 C% ηBoiler/% Carbon tax/USD·t−1
    Value 30000 74.5 70 20
    下载: 导出CSV

    表  8  含碳排放费用表

    Table  8.   Cost with the consideration of carbon Emission

    Tmin/℃Carbon emission/(t·a−1Carbon tax cost/(USD·a−1Cost with the consideration of carbon Emission/(USD·a−1
    543033.82860676.503765978.45
    644315.73886314.563678981.26
    745488.26909765.133631442.23
    846550.96931019.213607813.42
    947723.34954466.783606602.46
    1048895.72977914.353617567.84
    1150177.811003556.163642945.43
    1251350.191027003.743668888.26
    1352522.571050451.313700734.93
    1453694.941073898.883745407.02
    下载: 导出CSV
  • [1] Sreepathi B K, Rangaiah GP. Review of Heat Exchanger Network Retrofitting Methodologies and Their Applications[J]. Industrial & Engineering Chemistry Research, 2014, 53(28): 11205-11220.
    [2] 陈鹏, 罗娜. 基于竞争机制差分进化算法的无分流换热网络优化[J]. 华东理工大学学报(自然科学版), 2019, 45(6): 970-979.
    [3] 芦泽龙, 秦康, 吴昊, 何跃, 曹文磊. 换热网络多目标优化研究进展[J]. 节能, 2021, 40(2): 75-79. doi: 10.3969/j.issn.1004-7948.2021.02.022
    [4] 赵野, 孙琳, 罗雄麟. 多程换热网络综合与夹点技术研究进展[J]. 化工进展, 2012(8): 66-70.
    [5] EBRAHIM M, KAWARI A. Pinch Technology: an Efficient Tool for Chemical-plant Energy and Capital-cost Saving[J]. Applied Energy, 2000, 65(1): 45-49.
    [6] 姚静, 王瑶, 匡国柱. 基于夹点技术的天然气净化装置的用能分析[J]. 辽宁化工, 2010(3): 232-235. doi: 10.3969/j.issn.1004-0935.2010.03.002
    [7] 姚克俭, 张颂红, 祝铃钰. 夹点技术在精馏系统优化中的应用[J]. 石油化工, 2000, 29(4): 275-278. doi: 10.3321/j.issn:1000-8144.2000.04.009
    [8] Linnhoff B. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5): 745-763. doi: 10.1016/0009-2509(83)80185-7
    [9] 张卫东, 孙巍, 刘君腾. 化工过程分析与合成. 第2版[M]. 化学工业出版社, 2011: 197-212.
    [10] 蒋宁, 范伟, 谢小东, 郭风元, 李恩腾, 赵世超. NSGA-Ⅱ和NSGA-Ⅲ 应用于换热网络多目标优化的对比[J]. 化工进展, 2020, 39(7): 2534-2547.
    [11] R. Mohammadhasani Khorasany, M. Fesanghary. A novel approach for synthesis of cost-optimal heat exchanger networks[J]. Computers and Chemical Engineering, 2008, 33(8): 1363-1370.
    [12] 李林. 基于流动与传热(㶲)损的换热网络优化方法研究[D]. 浙江工业大学, 2010.
  • 加载中
图(7) / 表(8)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  30
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 网络出版日期:  2022-05-12

目录

    /

    返回文章
    返回