高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于实际冷、热复合曲线的制苯和碳八装置热联合研究

李振东 张丹 杨敏博 冯霄

李振东, 张丹, 杨敏博, 冯霄. 基于实际冷、热复合曲线的制苯和碳八装置热联合研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220107003
引用本文: 李振东, 张丹, 杨敏博, 冯霄. 基于实际冷、热复合曲线的制苯和碳八装置热联合研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220107003
LI Zhendong, ZHANG Dan, YANG Minbo, FENG Xiao. Heat Integration Scheme for Benzene Production and C8 Units Based on Actual Cold and Hot Composite Curves[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220107003
Citation: LI Zhendong, ZHANG Dan, YANG Minbo, FENG Xiao. Heat Integration Scheme for Benzene Production and C8 Units Based on Actual Cold and Hot Composite Curves[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220107003

基于实际冷、热复合曲线的制苯和碳八装置热联合研究

doi: 10.14135/j.cnki.1006-3080.20220107003
基金项目: 国家自然科学基金资助项目(21736008)
详细信息
    作者简介:

    李振东(1996—),男,安徽巢湖人,硕士生,研究方向为系统工程

    通讯作者:

    杨敏博,E-mail:yangmb@xjtu.edu.cn

  • 中图分类号: TQ021.8

Heat Integration Scheme for Benzene Production and C8 Units Based on Actual Cold and Hot Composite Curves

  • 摘要: 不同装置间的热联合是炼厂提高能量利用率的有效措施。为获得热联合的实际节能潜力和提高改造方案的抗波动能力,提出了基于实际冷、热复合曲线的热联合改造方法。基于某石化企业中制苯装置和碳八装置的工业数据,使用Aspen HYSYS 建立了换热网络模型,并利用Aspen Energy Analyzer进行换热网络分析,提出了制苯装置的换热网络改造方案。通过所提出的改造方法,给出了装置间热联合的节能潜力,并综合改造实施的限制和复杂程度,提出了两个热联合方案,并对方案结果进行了对比和讨论。结果表明,节能较多的方案需要更多的投资成本,投资回收期略长,但从长远来看经济效益更好。

     

  • 图  1  制苯装置总复合曲线

    Figure  1.  Grand compound curve of the benzene production unit

    图  2  制苯装置换热网络改造方案

    Figure  2.  Retrofit scheme of heat exchanger network for the benzene production unit

    图  3  碳八装置总复合曲线

    Figure  3.  Grand composite curve of the C8 unit

    图  4  实际冷、热复合曲线

    Figure  4.  Actual cold and hot composite curves

    图  5  热联合方案1

    Figure  5.  Scheme 1 of heat integration across units

    图  6  热联合方案2

    Figure  6.  Scheme 2 of heat integration across units

    表  1  制苯装置换热器数据(B,H和C分别表示苯,热流和冷流)

    Table  1.   Data of heat exchangers in the benzene production unit (B, H, and C represent the benzene production unit, hot streams and cold streams, respectively)

    Heat exchangersHot streamsCold streamsLoad /kW
    Descriptiontin/°Ctout /°CDescriptiontin /°Ctout /°C
    E-102A/BMedium pressure steamBC1124.7127.04145
    E-103BH157.141.0Cooling water3127
    E-1103BH263.448.4Cooling water6053
    E-1104A/BMedium pressure steamBC2138.3143.65462
    E-1104NBH3180.0165.0BC2138.3143.61271
    E-1111RNBH4138.375.0BC330.045.79309
    E-202BH584.440.0Cooling water40160
    E-303NBH6131.198.1BC480.099.6823
    E-304ANBH7285.6125.6BC499.6243.67124
    E-402BH7129.739.2Cooling water2553
    E-408BH6155.0131.1BC5103.3128.1641
    EA-401BH896.439.0Cooling water116
    E-406Medium pressure steamBC6155.1158.0819
    EA-502BH9112.099.7Air5356
    E-503BH999.748.2Cooling water1326
    E-109RMedium pressure steamBC6155.7158.73823
    E-504BH10158.740.0Cooling water1063
    E-3606BH3165.0152.8BC745.090.41010
    E-3608BH3152.8118.7Cooling water2733
    E-3601BH1181.441.3Cooling water2800
    E-3602A/BHigh pressure steamBC8154.7176.56370
    E-3603BH1245.440.4Cooling water4694
    E-3604High pressure steamBC9204.2205.02940
    E-3605BH3208.0180.0BC10144.3167.72446
    E-3609BH3160.155.0Cooling water189
    E-3610High pressure steamBC9157.3160.1129
    下载: 导出CSV

    表  2  碳八装置的换热器数据(O,H,和C分别表示碳八,热流和冷流)

    Table  2.   Data of heat exchangers in the C8 unit (O, H and C represent the C8 unit, hot streams, and cold streams, respectively).

    Heat exchangersHot streamsCold streamsLoad /kW
    Descriptiontin /°Ctout /°CDescriptiontin /°Ctout /°C
    E-2111OH1120.540.0Cooling water309
    E-2112Low pressure steamOC1120.5124.54583
    E-2113OH269.144.4Cooling water323
    E-2201OH333.029.0Cooling water38
    E-2202OH433.020.0Cooling water1
    E-2301OH5100.095.0OC240.073.599
    E-2302OH663.242.5Cooling water122
    E-2304OH642.56.2Cooling water2
    E-2305Low pressure steamOC390.0130.03437
    E-2313Low pressure steamOC4136.5140.0144
    E-2308OH595.079.8Cooling water293
    E-2310OH750.340.0Cooling water32
    E-2312Low pressure steamOC51011201604
    E-2307AOH5110.0100.0Cooling water198
    E-2400OH869.512.7Cooling water1
    E-2407Ultra-low pressure steamOC678.082.0216
    E-2411OH981.552.0Cooling water48
    E-2401OH1071.028.1Cooling water510
    E-2403OH1132.030.7Cooling water2
    E-2404Ultra-low pressure steamOC771.572.0299
    E-2405OH1167.032.0Cooling water40
    下载: 导出CSV

    表  3  制苯装置现行换热网络的不合理换热

    Table  3.   Unreasonable heat transfer in the current heat exchanger network of benzene production unit

    Heat exchangersLoad /kWUnreasonable type
    E-36081058Cooler above the pinch point
    E-36061010Heat exchanger across the pinch point
    E-304AN433Heat exchanger across the pinch point
    E-408325Heat exchanger across the pinch point
    E-504187Cooler above the pinch point
    E-3609143Cooler above the pinch point
    Total3156
    下载: 导出CSV

    表  4  制苯装置方案的投资成本和经济效益

    Table  4.   Investment costs and economic benefit of the scheme in the benzene production unit

    Heat exchangersInvestment cost
    /104 CNY
    Economic benefits
    /104 CNY/a
    E-100107.6833.8
    E-10160.2
    下载: 导出CSV

    表  5  碳八装置现行换热网络的不合理换热

    Table  5.   Unreasonable heat transfer in the current heat exchanger network of C8 unit

    Heat exchangersLoad/kWUnreasonable type
    E-2307A198Cooler above the pinch point
    E-2308159Cooler above the pinch point
    E-2111135Cooler above the pinch point
    E-230194Heat exchanger across the pinch point
    Total586
    下载: 导出CSV

    表  6  热联合方案的投资成本和经济效益

    Table  6.   Investment costs and economic benefits of the schemes of heat integration across units

    SchemesHeat exchangersInvestment
    cost/104 CNY
    Economic
    benefits /104 CNY/a
    1HCE-10078.6399.8
    2HCE-10081.3523.6
    HCE-10151.9
    下载: 导出CSV
  • [1] 王彧斐, 王伟, 冯霄. 考虑中间介质换热的厂际热联合[J]. 华东理工大学学报(自然科学版), 2014, 40(2): 202-205. doi: 10.3969/j.issn.1006-3080.2014.02.012
    [2] 曾惠平. 炼油事业部装置热联合节能效果明显[J]. 高桥石化, 2007, 022(2): 38.
    [3] 潘罗其. 重油催化裂化与苯乙烯装置的热联合节能[J]. 炼油技术与工程, 2013, 43(3): 24-27.
    [4] 常安, 翟晓靖, 张睿, 等. 炼油装置间热联合可行性分析及优化建议[J]. 石油石化节能, 2016, 6(11): 5-7. doi: 10.3969/j.issn.2095-1493.2016.11.002
    [5] 王珊珊, 潘登, 孙绍鹏. 催化分馏塔顶循系统低温热源的综合利用[J]. 中外能源, 2021, 26(5): 88-92.
    [6] BONHIVERS J C, MOUSSAVI A, ALVA-ARGAEZ A, et al. Linking pinch analysis and bridge analysis to save energy by heat-exchanger network retrofit[J]. Applied Thermal Engineering, 2016: 443-472.
    [7] AHMAND S, HUI D C W. Heat recovery between areas of integrity[J]. Computers & Chemical Engineering, 1991, 15(12): 809-832.
    [8] HONG X D, LIAO Z W, SUN J Y, et al. Transshipment type heat exchanger network model for intra- and inter-plant heat integration using process streams[J]. Energy, 2019, 178: 853-866. doi: 10.1016/j.energy.2019.04.112
    [9] BAGAJEWICZ M, RODERA H. Multiple plant heat integration in a total site[J]. AIChE Journal, 2002, 48(10): 2255-2270. doi: 10.1002/aic.690481016
    [10] HUI C W, AHMAD S. Minimum cost heat recovery between separate plant regions[J]. Computers & Chemical Engineering, 1994, 18(8): 711-728.
    [11] HU C W, AHMAD S. Total site heat integration using the utility system[J]. Computers & Chemical Engineering, 1994, 18(8): 729-742.
    [12] DHOLE V R, LINNHOFF B. Total site targets for fuel, cogeneration, emissions, and cooling[J]. Computers & Chemical Engineering, 1992, 7: S101-S109.
    [13] KLEMEŠ J, DHOLE V R, RAISSI K, et al. Targeting and design methodology for reduction of fuel, power and CO2 on total sites[J]. Applied Thermal Engineering, 1997, 17(8/10): 993-1003. doi: 10.1016/S1359-4311(96)00087-7
    [14] 尹洪超, 张英, 李振民. 改进的全局能量集成法及其在炼油联合装置中应用[J]. 大连理工大学学报, 2001, 41(5): 552-556. doi: 10.3321/j.issn:1000-8608.2001.05.012
    [15] 章琦, 张冰剑, 王北星. 夹点技术分析在装置间热联合优化的应用[J]. 节能, 2013, 032(7): 53-57.
    [16] BOLDYRYEV S, SHAMRAEV A A, SHAMRAEVA E O. The design of the total site exchanger network with intermediate heat carriers: Theoretical insights and practical application[J]. Energy, 2021, 223: 120023. doi: 10.1016/j.energy.2021.120023
    [17] . 韦鉴, 夹点技术分析在装置间热联合优化的应用[J]. 化工管理, 2019(17): 124-125.
    [18] 任思月, 冯霄, 周树叶, 等. 基于总复合曲线的催化裂化-气体分馏装置热联合方案[J]. 石化技术与应用, 2021, 39(2): 87-92.
    [19] BÜTÜN H, KANTOR I, MARÉCHAL F. A heat integration method with multiple heat exchange interfaces[J]. Energy, 2018, 152: 476-488. doi: 10.1016/j.energy.2018.03.114
    [20] PAVÃO L, COSTA C, RAVAGNANI M. Heat exchanger networks retrofit with an extended superstructure model and a meta-heuristic solution approach[J]. Computers & Chemical Engineering, 2019, 125: 380-399.
    [21] RODERA H, BAGAJEWICZ M. Multipurpose Heat-Exchanger Networks for Heat Integration Across Plants[J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5585-5603.
    [22] TARIGHALESLAMI A H, WALMSLEY T G, ATKINS M J, et al. Total Site Heat Integration: Utility selection and optimisation using cost and exergy derivative analysis[J]. Energy, 2017, 141: 949-963. doi: 10.1016/j.energy.2017.09.148
    [23] NORDMAN R, BERNTSSON T. New pinch technology based HEN analysis methodologies for cost-effective retrofitting[J]. The Canadian Journal of Chemical Engineering, 2001, 79: 655-662.
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  42
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 网络出版日期:  2022-05-12

目录

    /

    返回文章
    返回