[1] |
HA A D, FUNG V S. Huntington's disease[J]. Current Opinion Neurol, 2012, 25(4): 491-498. doi: 10.1097/WCO.0b013e3283550c97
|
[2] |
ILLARIOSHKIN S N, KLYUSHNIKOV S A, VIGONT V A, et al. Molecular pathogenesis in Huntington’s disease[J]. Biochemistry (Moscow), 2018, 83(9): 1030-1039. doi: 10.1134/S0006297918090043
|
[3] |
WALKER F O. Huntington's disease[J]. The Lancet, 2007, 369(9557): 218-228. doi: 10.1016/S0140-6736(07)60111-1
|
[4] |
PAVESE N, POLITIS M, TAI Y F, et al. Cortical dopamine dysfunction in symptomatic and premanifest Huntington's disease gene carriers[J]. Neurobiology of Disease, 2010, 37(2): 356-361. doi: 10.1016/j.nbd.2009.10.015
|
[5] |
JAMWAL S, KUMAR P. Antidepressants for neuroprotection in Huntington's disease: A review[J]. European Journal of Pharmacology, 2015, 769: 33-42. doi: 10.1016/j.ejphar.2015.10.033
|
[6] |
BHATEJA D K, DHULL D K, GILL A, et al. Peroxisome proliferator-activated receptor-alpha activation attenuates 3-nitropropionic acid induced behavioral and biochemical alterations in rats: Possible neuroprotective mechanisms[J]. European Journal of Pharmacology, 2012, 674(1): 33-43. doi: 10.1016/j.ejphar.2011.10.029
|
[7] |
BASHIR H, JANKOVIC J. Treatment options for chorea[J]. Expert Review of Neurotherapeutics, 2018, 18(1): 51-63. doi: 10.1080/14737175.2018.1403899
|
[8] |
ZEEF D H, JAHANSHAHI A, VLAMINGS R, et al. An experimental model for Huntington's chorea?[J]. Behavioural Brain Research, 2014, 262: 31-34. doi: 10.1016/j.bbr.2013.12.036
|
[9] |
ARYA D, KHAN T, MARGOLIUS A J, et al. Tardive dyskinesia: Treatment update[J]. Current Neurology And Neuroscience Reports, 2019, 19(9): 69. doi: 10.1007/s11910-019-0976-1
|
[10] |
PETERSEN A, WEYDT P. The psychopharmacology of Huntington's disease[J]. Handbook of Clinical Neurology, 2019, 165: 179-189.
|
[11] |
TARAKAD A, JIMENEZ-SHAHED J. VMAT2 Inhibitors in neuropsychiatric disorders[J]. CNS Drugs, 2018, 32(12): 1131-1144. doi: 10.1007/s40263-018-0580-y
|
[12] |
MOSLEMI M, KHODAGHOLI F, ASADI S, et al. Oxytocin protects against 3-NP induced learning and memory impairment in rats: Sex differences in behavioral and molecular responses to the context of prenatal stress[J]. Behavioural Brain Research, 2020, 379: 112354. doi: 10.1016/j.bbr.2019.112354
|
[13] |
GUPTA S, SHARMA B. Pharmacological benefits of agomelatine and vanillin in experimental model of Huntington's disease[J]. Pharmacology Biochemistry and Behavior, 2014, 122: 122-135. doi: 10.1016/j.pbb.2014.03.022
|
[14] |
WEYDT P, PINEDA V V, TORRENCE A E, et al. Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration[J]. Cell Metabolism, 2006, 4(5): 349-362. doi: 10.1016/j.cmet.2006.10.004
|
[15] |
KUMAR P, KALONIA H, KUMAR A. Possible GABAergic mechanism in the neuroprotective effect of gabapentin and lamotrigine against 3-nitropropionic acid induced neurotoxicity[J]. European Journal of Pharmacology, 2012, 674(2/3): 265-274. doi: 10.1016/j.ejphar.2011.11.030
|
[16] |
KUMAR P, KUMAR A. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington's like symptoms in rats: Possible role of nitric oxide[J]. Behavioural Brain Research, 2010, 206(1): 38-46. doi: 10.1016/j.bbr.2009.08.028
|
[17] |
TASSET I, MEDINA F J, JIMENA I, et al. Neuroprotective effects of extremely low-frequency electromagnetic fields on a Huntington's disease rat model: Effects on neurotrophic factors and neuronal density[J]. Neuroscience, 2012, 209: 54-63. doi: 10.1016/j.neuroscience.2012.02.034
|
[18] |
THAKUR T, SHARMA S, KUMAR K, et al. Neuroprotective role of PDE4 and PDE5 inhibitors in 3-nitropropionic acid induced behavioral and biochemical toxicities in rats[J]. European Journal of Pharmacology, 2013, 714(1/3): 515-521. doi: 10.1016/j.ejphar.2013.06.035
|
[19] |
WEN ZAIZHI Z J, PAN X C. Quantitative analysis of functional connectivity between prefrontal cortex and striatum[J]. Journal of East China University of Science and Technology, 2019, 45(2): 316-327.
|
[20] |
TABRIZI S J, GHOSH R, LEAVITT B R. Huntingtin lowering strategies for disease modification in Huntington's disease[J]. Neuron, 2019, 101(5): 801-819. doi: 10.1016/j.neuron.2019.01.039
|
[21] |
SHARMA M, RAJENDRARAO S, SHAHANI N, et al. Cyclic GMP-AMP synthase promotes the inflammatory and autophagy responses in Huntington disease[J]. Proceedings of the National Academy of Sciences, 2020, 117(27): 15989-15999. doi: 10.1073/pnas.2002144117
|
[22] |
MIRANDA A S, CARDOZO P L, SILVA F R, et al. Alterations of calcium channels in a mouse model of Huntington's disease and neuroprotection by blockage of CaV1 channels[J]. ASN Neuro, 2019, 11: 1-13.
|
[23] |
GHARAIBEH A, MAITI P, CULVER R, et al. Solid lipid curcumin particles protect medium spiny neuronal morphology, and reduce learning and memory deficits in the YAC128 mouse model of Huntington's disease[J]. International Journal of Molecular Sciences, 2020, 21(24): 9542.
|
[24] |
GOEHLER H, LALOWSKI M, STELZL U, et al. A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease[J]. Molecular Cell, 2004, 15(6): 853-865. doi: 10.1016/j.molcel.2004.09.016
|
[25] |
BLUMENSTOCK S, DUDANOVA I. Cortical and striatal circuits in Huntington's disease[J]. Frontiers in Neuroscience, 2020, 14: 82. doi: 10.3389/fnins.2020.00082
|
[26] |
KLEIN M O, BATTAGELLO D S, CARDOSO A R, et al. Dopamine: Functions, signaling, and association with neurological diseases[J]. Cellular and Molecular Neurobiology, 2019, 39(1): 31-59. doi: 10.1007/s10571-018-0632-3
|
[27] |
DAUBNER S C, LE T, WANG S. Tyrosine hydroxylase and regulation of dopamine synthesis[J]. Archives of Biochemistry and Biophysics, 2011, 508(1): 1-12. doi: 10.1016/j.abb.2010.12.017
|
[28] |
STAEDTKE V, BAI R Y, KIM K, et al. Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome[J]. Nature, 2018, 564(7735): 273-277. doi: 10.1038/s41586-018-0774-y
|
[29] |
WILLEMSEN M A, VERBEEK M M, KAMSTEEG E J, et al. Tyrosine hydroxylase deficiency: A treatable disorder of brain catecholamine biosynthesis[J]. Brain, 2010, 133(6): 1810-1822.
|
[30] |
OCHABA J, MONTEYS A M, O'ROURKE J G, et al. PIAS1 Regulates mutant huntingtin accumulation and Huntington's disease-associated phenotypes in vivo[J]. Neuron, 2016, 90(3): 507-520. doi: 10.1016/j.neuron.2016.03.016
|
[31] |
HUNTINGTON STUDY G. Tetrabenazine as antichorea therapy in Huntington disease: A randomized controlled trial[J]. Neurology, 2006, 66(3): 366-372. doi: 10.1212/01.wnl.0000198586.85250.13
|