高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

丁苯那嗪调节TH和突触囊泡转运改善HD的机制研究

王如意 范晶菁 李洪林 王蕊

王如意, 范晶菁, 李洪林, 王蕊. 丁苯那嗪调节TH和突触囊泡转运改善HD的机制研究[J]. 华东理工大学学报(自然科学版), 2023, 49(2): 211-219. doi: 10.14135/j.cnki.1006-3080.20220107002
引用本文: 王如意, 范晶菁, 李洪林, 王蕊. 丁苯那嗪调节TH和突触囊泡转运改善HD的机制研究[J]. 华东理工大学学报(自然科学版), 2023, 49(2): 211-219. doi: 10.14135/j.cnki.1006-3080.20220107002
WANG Ruyi, FAN Jingjing, LI Honglin, WANG Rui. Mechanism of Tetrabenazine Regulating TH and Synaptic Vesicle Transport to Improve HD[J]. Journal of East China University of Science and Technology, 2023, 49(2): 211-219. doi: 10.14135/j.cnki.1006-3080.20220107002
Citation: WANG Ruyi, FAN Jingjing, LI Honglin, WANG Rui. Mechanism of Tetrabenazine Regulating TH and Synaptic Vesicle Transport to Improve HD[J]. Journal of East China University of Science and Technology, 2023, 49(2): 211-219. doi: 10.14135/j.cnki.1006-3080.20220107002

丁苯那嗪调节TH和突触囊泡转运改善HD的机制研究

doi: 10.14135/j.cnki.1006-3080.20220107002
详细信息
    作者简介:

    王如意(1996-),女,浙江台州人,硕士生,主要研究方向为药理学。E-mail:874686202@qq.com

    通讯作者:

    李洪林, E-mail:hlli@ecust.edu.cn

    王 蕊,E-mail:ruiwang@ecust.edu.cn

  • 中图分类号: R965

Mechanism of Tetrabenazine Regulating TH and Synaptic Vesicle Transport to Improve HD

  • 摘要: 通过腹腔注射3-硝基丙酸(3-NP)建立亨廷顿舞蹈症(HD)大鼠模型,探究丁苯那嗪(TBZ)改善HD样症状的作用及机制。结果显示,TBZ缓解了3-NP诱导的HD大鼠体重下降和运动障碍,逆转了纹状体中亨廷顿蛋白(Htt)的表达和神经元丢失;同时TBZ调节了纹状体中神经递质的含量,抑制酪氨酸羟化酶(TH)和囊泡单胺转运体2(VMAT2)的表达,并保护突触免受损伤;TBZ通过同时调控突触囊泡转运和TH的表达以降低纹状体中多巴胺(DA)的释放和合成,保护突触功能和神经元,从而减轻HD样症状。

     

  • 图  1  实验流程示意图

    i.p—Intraperitoneal injection; i.g—Intragastric administraction

    Figure  1.  Experimental flow chart

    图  2  TBZ逆转3-NP诱导的体重减少和异常行为

    Figure  2.  TBZ reversed 3-NP induced weight loss and abnormal behavior

    图  3  TBZ减轻3-NP诱导的Htt蛋白水平的升高

    Figure  3.  TBZ reverses 3-NP-induced Htt protein upregulation

    图  4  TBZ提高3-NP诱导的大鼠纹状体和黑质中神经元的存活

    Figure  4.  TBZ improved 3-NP - induced neuronal survival in striatum and substantia nigra

    图  5  TBZ影响多巴胺及其代谢物的水平

    Figure  5.  TBZ affects the levels of DA and its metabolite

    图  6  TBZ调节TH的表达水平

    Figure  6.  TBZ regulated TH expression level

    图  7  TBZ抑制3-NP诱导的突触损伤并调节VMAT2的表达水平

    Figure  7.  TBZ inhibited 3-NP induced synaptic damage and regulated VMAT2 expression

    图  8  TBZ改善HD样症状的机制示意图

    Figure  8.  Schematic diagram of mechanism of TBZ ameliorating HD-like symptoms

    DDC—Dopa decarboxylase; DOPAC—3,4-Dihydroxyphenylacetic acid; HVA—Homovanillic acid

  • [1] HA A D, FUNG V S. Huntington's disease[J]. Current Opinion Neurol, 2012, 25(4): 491-498. doi: 10.1097/WCO.0b013e3283550c97
    [2] ILLARIOSHKIN S N, KLYUSHNIKOV S A, VIGONT V A, et al. Molecular pathogenesis in Huntington’s disease[J]. Biochemistry (Moscow), 2018, 83(9): 1030-1039. doi: 10.1134/S0006297918090043
    [3] WALKER F O. Huntington's disease[J]. The Lancet, 2007, 369(9557): 218-228. doi: 10.1016/S0140-6736(07)60111-1
    [4] PAVESE N, POLITIS M, TAI Y F, et al. Cortical dopamine dysfunction in symptomatic and premanifest Huntington's disease gene carriers[J]. Neurobiology of Disease, 2010, 37(2): 356-361. doi: 10.1016/j.nbd.2009.10.015
    [5] JAMWAL S, KUMAR P. Antidepressants for neuroprotection in Huntington's disease: A review[J]. European Journal of Pharmacology, 2015, 769: 33-42. doi: 10.1016/j.ejphar.2015.10.033
    [6] BHATEJA D K, DHULL D K, GILL A, et al. Peroxisome proliferator-activated receptor-alpha activation attenuates 3-nitropropionic acid induced behavioral and biochemical alterations in rats: Possible neuroprotective mechanisms[J]. European Journal of Pharmacology, 2012, 674(1): 33-43. doi: 10.1016/j.ejphar.2011.10.029
    [7] BASHIR H, JANKOVIC J. Treatment options for chorea[J]. Expert Review of Neurotherapeutics, 2018, 18(1): 51-63. doi: 10.1080/14737175.2018.1403899
    [8] ZEEF D H, JAHANSHAHI A, VLAMINGS R, et al. An experimental model for Huntington's chorea?[J]. Behavioural Brain Research, 2014, 262: 31-34. doi: 10.1016/j.bbr.2013.12.036
    [9] ARYA D, KHAN T, MARGOLIUS A J, et al. Tardive dyskinesia: Treatment update[J]. Current Neurology And Neuroscience Reports, 2019, 19(9): 69. doi: 10.1007/s11910-019-0976-1
    [10] PETERSEN A, WEYDT P. The psychopharmacology of Huntington's disease[J]. Handbook of Clinical Neurology, 2019, 165: 179-189.
    [11] TARAKAD A, JIMENEZ-SHAHED J. VMAT2 Inhibitors in neuropsychiatric disorders[J]. CNS Drugs, 2018, 32(12): 1131-1144. doi: 10.1007/s40263-018-0580-y
    [12] MOSLEMI M, KHODAGHOLI F, ASADI S, et al. Oxytocin protects against 3-NP induced learning and memory impairment in rats: Sex differences in behavioral and molecular responses to the context of prenatal stress[J]. Behavioural Brain Research, 2020, 379: 112354. doi: 10.1016/j.bbr.2019.112354
    [13] GUPTA S, SHARMA B. Pharmacological benefits of agomelatine and vanillin in experimental model of Huntington's disease[J]. Pharmacology Biochemistry and Behavior, 2014, 122: 122-135. doi: 10.1016/j.pbb.2014.03.022
    [14] WEYDT P, PINEDA V V, TORRENCE A E, et al. Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration[J]. Cell Metabolism, 2006, 4(5): 349-362. doi: 10.1016/j.cmet.2006.10.004
    [15] KUMAR P, KALONIA H, KUMAR A. Possible GABAergic mechanism in the neuroprotective effect of gabapentin and lamotrigine against 3-nitropropionic acid induced neurotoxicity[J]. European Journal of Pharmacology, 2012, 674(2/3): 265-274. doi: 10.1016/j.ejphar.2011.11.030
    [16] KUMAR P, KUMAR A. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington's like symptoms in rats: Possible role of nitric oxide[J]. Behavioural Brain Research, 2010, 206(1): 38-46. doi: 10.1016/j.bbr.2009.08.028
    [17] TASSET I, MEDINA F J, JIMENA I, et al. Neuroprotective effects of extremely low-frequency electromagnetic fields on a Huntington's disease rat model: Effects on neurotrophic factors and neuronal density[J]. Neuroscience, 2012, 209: 54-63. doi: 10.1016/j.neuroscience.2012.02.034
    [18] THAKUR T, SHARMA S, KUMAR K, et al. Neuroprotective role of PDE4 and PDE5 inhibitors in 3-nitropropionic acid induced behavioral and biochemical toxicities in rats[J]. European Journal of Pharmacology, 2013, 714(1/3): 515-521. doi: 10.1016/j.ejphar.2013.06.035
    [19] WEN ZAIZHI Z J, PAN X C. Quantitative analysis of functional connectivity between prefrontal cortex and striatum[J]. Journal of East China University of Science and Technology, 2019, 45(2): 316-327.
    [20] TABRIZI S J, GHOSH R, LEAVITT B R. Huntingtin lowering strategies for disease modification in Huntington's disease[J]. Neuron, 2019, 101(5): 801-819. doi: 10.1016/j.neuron.2019.01.039
    [21] SHARMA M, RAJENDRARAO S, SHAHANI N, et al. Cyclic GMP-AMP synthase promotes the inflammatory and autophagy responses in Huntington disease[J]. Proceedings of the National Academy of Sciences, 2020, 117(27): 15989-15999. doi: 10.1073/pnas.2002144117
    [22] MIRANDA A S, CARDOZO P L, SILVA F R, et al. Alterations of calcium channels in a mouse model of Huntington's disease and neuroprotection by blockage of CaV1 channels[J]. ASN Neuro, 2019, 11: 1-13.
    [23] GHARAIBEH A, MAITI P, CULVER R, et al. Solid lipid curcumin particles protect medium spiny neuronal morphology, and reduce learning and memory deficits in the YAC128 mouse model of Huntington's disease[J]. International Journal of Molecular Sciences, 2020, 21(24): 9542.
    [24] GOEHLER H, LALOWSKI M, STELZL U, et al. A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease[J]. Molecular Cell, 2004, 15(6): 853-865. doi: 10.1016/j.molcel.2004.09.016
    [25] BLUMENSTOCK S, DUDANOVA I. Cortical and striatal circuits in Huntington's disease[J]. Frontiers in Neuroscience, 2020, 14: 82. doi: 10.3389/fnins.2020.00082
    [26] KLEIN M O, BATTAGELLO D S, CARDOSO A R, et al. Dopamine: Functions, signaling, and association with neurological diseases[J]. Cellular and Molecular Neurobiology, 2019, 39(1): 31-59. doi: 10.1007/s10571-018-0632-3
    [27] DAUBNER S C, LE T, WANG S. Tyrosine hydroxylase and regulation of dopamine synthesis[J]. Archives of Biochemistry and Biophysics, 2011, 508(1): 1-12. doi: 10.1016/j.abb.2010.12.017
    [28] STAEDTKE V, BAI R Y, KIM K, et al. Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome[J]. Nature, 2018, 564(7735): 273-277. doi: 10.1038/s41586-018-0774-y
    [29] WILLEMSEN M A, VERBEEK M M, KAMSTEEG E J, et al. Tyrosine hydroxylase deficiency: A treatable disorder of brain catecholamine biosynthesis[J]. Brain, 2010, 133(6): 1810-1822.
    [30] OCHABA J, MONTEYS A M, O'ROURKE J G, et al. PIAS1 Regulates mutant huntingtin accumulation and Huntington's disease-associated phenotypes in vivo[J]. Neuron, 2016, 90(3): 507-520. doi: 10.1016/j.neuron.2016.03.016
    [31] HUNTINGTON STUDY G. Tetrabenazine as antichorea therapy in Huntington disease: A randomized controlled trial[J]. Neurology, 2006, 66(3): 366-372. doi: 10.1212/01.wnl.0000198586.85250.13
  • 加载中
图(8)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  78
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 网络出版日期:  2022-05-26
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回