高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

蠕变氧化交互下裂纹扩展行为的数值分析

谈建平 闫阿晨 曾鑫 刘长军 蔡君 苏东川 邵雪娇

谈建平, 闫阿晨, 曾鑫, 刘长军, 蔡君, 苏东川, 邵雪娇. 蠕变氧化交互下裂纹扩展行为的数值分析[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220107001
引用本文: 谈建平, 闫阿晨, 曾鑫, 刘长军, 蔡君, 苏东川, 邵雪娇. 蠕变氧化交互下裂纹扩展行为的数值分析[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220107001
TAN Jianping, YAN Acheng, ZENG Xin, LIU Changjun, CAI Jun, SU Dongchuan, SHAO Xuejiao. Numerical Analysis on Creep-Oxidation Interaction of Crack Growth Behavior[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220107001
Citation: TAN Jianping, YAN Acheng, ZENG Xin, LIU Changjun, CAI Jun, SU Dongchuan, SHAO Xuejiao. Numerical Analysis on Creep-Oxidation Interaction of Crack Growth Behavior[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220107001

蠕变氧化交互下裂纹扩展行为的数值分析

doi: 10.14135/j.cnki.1006-3080.20220107001
基金项目: 国家自然科学基金青年科学基金资助(11502082);国家自然科学基金面上资助(52075174)
详细信息
    作者简介:

    谈建平(1986-),男,上海人,博士,副教授,主要从事高温结构完整性方面的研究。E-mail:jptan@ecust.edu.cn

    通讯作者:

    曾 鑫, E-mail:ecust_zengxin@163.com

  • 中图分类号: TG132.3+2

Numerical Analysis on Creep-Oxidation Interaction of Crack Growth Behavior

  • 摘要: 为研究氧敏感材料在蠕变-氧化交互下裂纹扩展行为的变化规律,基于动态脆化物理机制,建立了蠕变耦合氧化损伤的数学模型,利用Abaqus和Voronoi图技术进行了镍基合金蠕变-氧化裂纹扩展数值模拟,分析了载荷水平、初始裂纹处晶界方向、氧扩散速率和蠕变性能对裂纹扩展行为的影响。结果表明:当载荷较小时,裂纹扩展时氧化促进效应显著;随着载荷的增加,逐渐趋于蠕变主导。由于氧更易扩散,直晶界裂纹相较于斜晶界裂纹的起裂时间更短。随着氧扩散速率的增大,裂纹起裂时间缩短,且载荷越大会使直晶界裂纹的起裂时间趋于稳定。蠕变本构参数对裂纹起裂时间随载荷的变化规律几乎没有影响,越难发生蠕变的材料或服役条件,氧对断裂的影响越大。

     

  • 图  1  有限元模型

    Figure  1.  Finite element model

    图  2  模拟流程图

    Figure  2.  Flow chart of simulation

    图  3  初始裂纹处不同的晶界方向

    Figure  3.  Different grain boundary directions at the initial crack

    图  4  不同载荷下的蠕变-氧化裂纹扩展模拟(左为直晶界裂纹,右为斜晶界裂纹)

    Figure  4.  Simulation of creep-oxidation crack growth under different loads (straight grain boundary on the left and oblique grain boundary on the right)

    图  5  不同晶界方向裂纹的起裂时间随载荷的变化

    Figure  5.  Variation of crack initiation time with load for different grain boundary directions

    图  6  不同氧扩散速率下裂纹的起裂时间随载荷的变化

    Figure  6.  Crack initiation time varies with load at different oxygen diffusion rates

    图  7  不同蠕变性能下裂纹的起裂时间随载荷的变化

    Figure  7.  Crack initiation time varies with load at different creep properties

    表  1  蠕变和氧化性能[7]

    Table  1.   Creep-oxidation properties[7]

    Temperature/℃AnmD/(mm2/h)Ω/mm3εcrit0k/(J·K−1)zb/mm
    6202.85E−216.10−0.529.14E−61.22E−200.091.38E−230.120.45E−6
    下载: 导出CSV

    表  2  拉伸性能

    Table  2.   Tensile Properties

    Temperature/℃Elastic Modulus/GPaPoisson's ratioYield strength/MPaTensile strength/MPa
    201760.347241103
    1001720.346881072
    2001670.356661060
    3001620.356601045
    4001570.366581038
    5001490.366481025
    6001400.366191010
    7001280.34560975
    下载: 导出CSV
  • [1] LIU Y Z, WAN M, MENG B. Multiscale modeling of coupling mechanisms in electrically assisted deformation of ultrathin sheets: An example on a nickel-based superalloy[J]. International Journal of Machine Tools and Manufacture, 2021, 162: 103689. doi: 10.1016/j.ijmachtools.2021.103689
    [2] 谢锡善, 赵双群, 董建新, 等. 超超临界电站用Inconel 740镍基合金的组织稳定性及其改型研究[J]. 动力工程学报, 2011, 31(8): 638-643.
    [3] RITCHIE R O. The conflicts between strength and toughness[J]. Nature Materials, 2011, 10(11): 817-822. doi: 10.1038/nmat3115
    [4] CHAN K S. A grain boundary fracture model for predicting dynamic embrittlement and oxidation-induced cracking in superalloys[J]. Metallurgical and Materials Transactions A, 2015, 46(6): 2491-2505. doi: 10.1007/s11661-015-2860-1
    [5] BIKA D, MCMAHON C J. A model for dynamic embrittlement[J]. Acta Metallurgica et Materialia, 1995, 43(5): 1909-1916. doi: 10.1016/0956-7151(94)00387-W
    [6] KRUPP U, KANE W M, LAIRD C, et al. Brittle intergranular fracture of a Ni-base superalloy at high temperatures by dynamic embrittlement[J]. Materials Science and Engineering:A, 2004, 387/389: 409-413. doi: 10.1016/j.msea.2004.05.053
    [7] MACIEJEWSKI K, DAHAL J, SUN Y, et al. Creep–environment interactions in dwell-fatigue crack growth of nickel based superalloys[J]. Metallurgical and Materials Transactions A, 2014, 45(5): 2508-2521. doi: 10.1007/s11661-014-2199-z
    [8] KANG B, LIU X, CISLOIU C, et al. High temperature moiré interferometry investigation of creep crack growth of inconel 783: environment and β-phase effects[J]. Materials Science and Engineering:A, 2003, 347(1): 205-213.
    [9] LIU X, KANG B, CARPENTER W, et al. Investigation of the crack growth behavior of Inconel 718 by high temperature Moire interferometry[J]. Journal of Materials Science, 2004, 39(6): 1967-1973. doi: 10.1023/B:JMSC.0000017758.91184.ac
    [10] WOODFORD D A. Gas phase embrittlement and time dependent cracking of nickel based superalloys[J]. Energy Materials, 2006, 1(1): 59-79. doi: 10.1179/174892306X99679
    [11] CHRIST H J, WACKERMANN K, KRUPP U. Effect of dynamic embrittlement on high temperature fatigue crack propagation in IN718 – experimental characterisation and mechanism-based modelling[J]. Materials at High Temperatures, 2016, 33(4-5): 528-535. doi: 10.1080/09603409.2016.1187464
    [12] 徐勇强, 秦宗慧, 周海婷, 等. 基于Voronoi微观晶粒结构确定Fe-Si合金中硅的晶界扩散系数[J]. 华东理工大学学报(自然科学版), 2017, 43(3): 436-442.
    [13] BUDDEN P J, AINSWORTH R A. The effect of constraint on creep fracture assessments[J]. International journal of fracture, 1999, 97(1): 237-247.
    [14] SUN Y, MACIEJEWSKI K, GHONEM H. A damage-based cohesive zone model of intergranular crack growth in a nickel-based superalloy[J]. International Journal of Damage Mechanics, 2013, 22(6): 905-923. doi: 10.1177/1056789512468917
    [15] ZHAO L, SONG K, XU L, et al. Investigating creep rupture and damage behavior of 41Fe-25.5Cr-23.5Ni alloy small punch creep specimens using a novel microstructure meshing approach[J]. Materials Science and Engineering:A, 2019, 766: 138370. doi: 10.1016/j.msea.2019.138370
    [16] ZHAO L, NIKBIN K M. Characterizing high temperature crack growth behaviour under mixed environmental, creep and fatigue conditions[J]. Materials Science and Engineering:A, 2018, 728: 102-114. doi: 10.1016/j.msea.2018.04.109
    [17] 涂善东. 高温结构完整性原理[M]. 北京: 科学出版社, 2003.
    [18] EVANS H E, LI H Y, BOWEN P. A mechanism for stress-aided grain boundary oxidation ahead of cracks[J]. Scripta Materialia, 2013, 69(2): 179-182. doi: 10.1016/j.scriptamat.2013.03.026
    [19] STARINSHAK D P, OWEN J M, JOHNSON J N. A new parallel algorithm for constructing Voronoi tessellations from distributed input data[J]. Computer Physics Communications, 2014, 185(12): 3204-3214. doi: 10.1016/j.cpc.2014.08.020
    [20] TAN J P, TU S T, WANG G Z, et al. Effect and mechanism of out-of-plane constraint on creep crack growth behavior of a Cr-Mo-V steel[J]. Engineering Fracture Mechanics, 2013, 99: 324-334. doi: 10.1016/j.engfracmech.2013.01.017
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  23
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 网络出版日期:  2022-04-24

目录

    /

    返回文章
    返回