高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

NADH扰动对酿酒酵母葡萄糖效应的影响

徐亚英 李志敏

徐亚英, 李志敏. NADH扰动对酿酒酵母葡萄糖效应的影响[J]. 华东理工大学学报(自然科学版), 2023, 49(2): 227-235. doi: 10.14135/j.cnki.1006-3080.20220106006
引用本文: 徐亚英, 李志敏. NADH扰动对酿酒酵母葡萄糖效应的影响[J]. 华东理工大学学报(自然科学版), 2023, 49(2): 227-235. doi: 10.14135/j.cnki.1006-3080.20220106006
XU Yaying, LI Zhimin. Influence of NADH Disturbance on Crabtree Effect of Saccharomyces cerevisiae[J]. Journal of East China University of Science and Technology, 2023, 49(2): 227-235. doi: 10.14135/j.cnki.1006-3080.20220106006
Citation: XU Yaying, LI Zhimin. Influence of NADH Disturbance on Crabtree Effect of Saccharomyces cerevisiae[J]. Journal of East China University of Science and Technology, 2023, 49(2): 227-235. doi: 10.14135/j.cnki.1006-3080.20220106006

NADH扰动对酿酒酵母葡萄糖效应的影响

doi: 10.14135/j.cnki.1006-3080.20220106006
基金项目: 国家自然科学基金(32171478)
详细信息
    作者简介:

    徐亚英(1990-),女,江苏盐城人,博士生,研究方向为酿酒酵母生产衣康酸。E-mail:y12170046@mail.ecust.edu.cn

    通讯作者:

    李志敏, E-mail:lizm@ecust.edu.cn

  • 中图分类号: Q591

Influence of NADH Disturbance on Crabtree Effect of Saccharomyces cerevisiae

  • 摘要: 利用不同拷贝数的载体在酿酒酵母中表达还原型烟酰胺腺嘌呤二核苷酸(NADH)氧化酶(NOX)和可替代氧化酶(AOX1),并通过线粒体定位信号减少AOX1对胞质NADH的影响,从而考察NOX和AOX1在分批发酵中对酿酒酵母葡萄糖效应的作用及其对葡萄糖生产衣康酸的影响。结果表明,高拷贝载体表达noxaox1基因的菌株均有明显的代谢变化,高拷贝表达nox菌株能够氧化胞质NADH,培养基中甘油分泌减少43.94%,衣康酸生产不受影响。而高拷贝表达aox1的菌株存在胞质残留AOX1,会氧化胞质NADH而减少甘油积累。利用线粒体定位信号AAC2和BCS1p将AOX1进一步定位至酿酒酵母线粒体,120 h时衣康酸产量增加至116.98 mg/L。但是AOX1、AAC2-AOX1和BCS1p-AOX1表达菌株都没有明显减少分批发酵中乙醇的积累。在高糖培养基中进行分批发酵,NOX能够减少葡萄糖效应甘油的积累,而AOX1 、AAC2-AOX1和BCS1p-AOX1不能减少葡萄糖效应副产物乙醇的积累。

     

  • 图  1  利用NADH氧化酶NOX减少甘油生产

    Figure  1.  Reducing glycerol production with NADH oxidase NOX

    图  2  利用替代氧化酶AOX1减少乙醇生产

    Figure  2.  Reducing ethanol production by overexpressing an alternative oxidase AOX1

    图  3  NOX(a)和AOX1(b)在酿酒酵母中的定位

    Figure  3.  Location of NOX(a) and AOX1(b) in Saccharomyces cerevisiae

    图  4  利用线粒体定位信号将替代氧化酶AOX1定位至线粒体

    Figure  4.  Further location of AOX1 in mitochondria of Saccharomyces cerevisiae with mitochondrial localization signals

    Subcellular localization of aac2-aox1-mCherry(A5) and bcs1p-aox1-mCherry(A7) fusion proteins in Saccharomyces cerevisiae. Strains expressing fusion protein were stained with MitoTracker® Green FM

    图  5  AOX1线粒体定位提高衣康酸滴度

    Figure  5.  Mitochondrial localization of AOX1 increases the titer of itaconic acid

    Expression of aac2-aox1 (XYY29) and bcs1p-aox1(XYY31) fusion proteins with high-copy plasmids

    表  1  本文所使用的菌株

    Table  1.   Strains used in this paper

    StrainGenotypeSource or reference
    E.coli DH5α Our lab
    BY4741 MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0 Refer [18]
    XYY2 BY4741, pRS415-PGPD-cadA-TCYC1 Refer [17]
    XYY21 XYY2, pRS413 This paper
    XYY22 XYY2, pRS423 Refer [17]
    XYY23 XYY2, pRS413-PGPD2-nox-TCYC1 This paper
    XYY24 XYY2, pRS423-PGPD2-nox-TCYC1 This paper
    XYY25 XYY2, pRS413-PTEF1-aox1-TCYC1 This paper
    XYY26 XYY2, pRS423-PTEF1-aox1-TCYC1 This paper
    XYY29 XYY2, pRS423-PTEF1-aac2-aox1-TCYC1 This paper
    XYY31 XYY2, pRS423-PTEF1-bcs1p-aox1-TCYC1 This paper
    Z1 BY4741, HO△:: PGPD-cadA-TCYC1, pRS423 This paper
    Z2 Z1, GPD2△:: nox This paper
    L1 BY4741, pRS425 This paper
    L2 BY4741, pRS425-PGPD2-mCherry-TCYC1 This paper
    L3 BY4741, pRS425-PGPD2-nox-mCherry-TCYC1 This paper
    A1 BY4741, pRS423 This paper
    A2 BY4741, pRS423-PTEF1-mCherry-TCYC1 This paper
    A3 BY4741, pRS423-PTEF1-aox1-mCherry-TCYC1 This paper
    A4 BY4741, pRS423- PTEF1-aac2-mCherry-TCYC1 This paper
    A5 BY4741, pRS423-PTEF1-aac2-aox1-mCherry-TCYC1 This paper
    A6 BY4741, pRS423-PTEF1-bcs1p-mCherry-TCYC1 This paper
    A7 BY4741, pRS423-PTEF1-bcs1p-aox1-mCherry-TCYC1 This paper
    下载: 导出CSV

    表  2  本文所使用的质粒

    Table  2.   Plasmids used in this paper

    PlasmidDescriptionReference
    pRS415ARS/CEN, Amp, LEURefer [17]
    pRS413ARS/CEN, Amp, HISThis paper
    pRS4252 µm ori, Amp, LEUThis paper
    pRS4232 µm ori, Amp, HISRefer [17]
    pCAS9-NATCAS9 expression plasmidRefer [18]
    pHYBgRNA cassetteRefer [18]
    下载: 导出CSV

    表  3  本文所使用的引物

    Table  3.   Primers used in this paper

    NameSequenceNameSequence
    zw-1Fcggccgctctagaactagtggatccgcaatgtttcgttggttataacattagzw-13Fatcaccaagctttgcaaagatggccatggtgagcaagggcgaggaggataac
    zw-1Rctacaacgattttactcataagctttgataaggaaggggagcgaaggzw-13Rcgaggtcgacggtatcgataagcttctacttgtacagctcgtccatgccg
    zw-2Ftcgctccccttccttatcaaagcttatgagtaaaatcgttgtagtcggtgzw-14Fatcaccaagctttgcaaagatggccatgagtaaaatcgttgtagtcggtgc
    zw-2Rcgaggtcgacggtatcgataagcttttatttttcagccgtaagggcagcczw-14Rtatcctcctcgcccttgctcaccattttttcagccgtaagggcagccattg
    zw-3Fggctgcccttacggctgaaaaataaaagcttatcgataccgtcgacctcgzw-15Fctaaagggaacaaaagctggagctcatagcttcaaaatgtttctactcct
    zw-3Rcgaattcctgcagcccgggggatccgcaaattaaagccttcgagcgtccczw-15Rcgaggtcgacggtatcgataagcttctacttgtacagctcgtccatgcc
    zw-4Fctaaagggaacaaaagctggagctccagcaatgtttcgttggttataacattagzw-16Fcaaaccaagctttgcaaagatggccatgtatccgacctcaggatgcgcga
    zw-4Rcgaggtcgacggtatcgataagcttttatttttcagccgtaagggcagcczw-16Rtatcctcctcgcccttgctcaccattatcacctcatcccgttcccagccag
    zw-5Fcggccgctctagaactagtggatccatagcttcaaaatgtttctactccttzw-17Fcaaaccaagctttgcaaagatggccatgtcttccaacgcccaagtcaaaac
    zw-5Rcgaattcctgcagcccgggggatccgcaaattaaagccttcgagcgtccczw-17Rtatcctcctcgcccttgctcaccattttgaacttcttaccaaacaagatc
    zw-6Fctaaagggaacaaaagctggagctcatagcttcaaaatgtttctactcczw-18Fzw-17F
    zw-6Rgtaatggcagtgctgttttaactagttttgtaattaaaacttagattagattgzw-18Rtatcctcctcgcccttgctcaccattatcacctcatcccgttcccagccag
    zw-7Fgttttaattacaaaactagttaaaacagcactgccattactaatacacctczw-19Fcaaaccaagctttgcaaagatggccatgtcggataagccgattgacatac
    zw-7Rtaatgatgatgatgatgatggatccgttttgtttaagctgatgcaattttttgzw-19Rtatcctcctcgcccttgctcaccattccattgtcatgttgtatgtagtttg
    zw-8Ftctaagttttaattacaaaactagtatgtcttccaacgcccaagtcaaaazw-20Fzw-19F
    zw-8Rtcgcgcatcctgaggtcggatacattttgaacttcttaccaaacaagatczw-20Rzw-18R
    zw-9Fgatcttgtttggtaagaagttcaaaatgtatccgacctcaggatgcgcgzw-21Fcctgtgtgacatttatgacggttttagagctagaaatagcaag
    zw-9Rtaatgatgatgatgatgatggatcctcatatcacctcatcccgttcccagzw-21Rcgtcataaatgtcacacagggatcatttatctttcactgcgga
    zw-10Ftctaagttttaattacaaaactagtatgtcggataagccgattgacataczw-22Fcatccaaaatattaaattttacttttattacatacaactttttaaactaatatacacattagtttatcattatcaatactcgcca
    zw-10Rtcgcgcatcctgaggtcggatacattccattgtcatgttgtatgtagtttgzw-22Rcaactattagctctaaatccatatcctcataagcagcaatcaattctatctatactttaaagcaaattaaagccttcgagcgtccc
    zw-11Fcaaactacatacaacatgacaatggaatgtatccgacctcaggatgcgcgagzw-23Fcgcactatctggtgcaaactgttttagagctagaaatagcaag
    zw-11Rtaatgatgatgatgatgatggatcctatcacctcatcccgttcccagccagzw-23Ragtttgcaccagatagtgcggatcatttatctttcactgcgga
    zw-12Fctaaagggaacaaaagctggagctcgcaatgtttcgttggttataacattzw-24Fgtattttggtagattcaattctctttccctttccttttccttcgctccccttccttatcaatgcttgctgtcatgagtaaaatcgttgtagtcgg
    zw-12Rccatggccatctttgcaaagcttggtgataaggaaggggagcgaaggaazw-24Rgtataatgataaattggttgggggaaaaagaggcaacaggaaagatcagagggggagggggggggagagtgtttatttttcagccgtaagggcagcc
    下载: 导出CSV
  • [1] BLAZECK J, MILLER J, PAN A, et al. Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production[J]. Applied Microbiology and Biotechnology, 2014, 98(19): 8155-8164. doi: 10.1007/s00253-014-5895-0
    [2] YOUNG E M, ZHAO Z, GIELESEN B E M, et al. Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast[J]. Metabolic Engineering, 2018, 48: 33-43.
    [3] POSTMA E, VERDUYN C, SCHEFFERS W A, et al. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 1989, 55(2): 468-477.
    [4] GAMBACORTA F V, DIETRICH J J, YAN Q, et al. Rewiring yeast metabolism to synthesize products beyond ethanol[J]. Current Opinion in Chemical Biology, 2020, 59: 182-192.
    [5] DAI Z, HUANG M, CHEN Y, et al. Global rewiring of cellular metabolism renders Saccharomyces cerevisiae crabtree negative[J]. Nature Communications, 2018, 9(1): 3059-3067. doi: 10.1038/s41467-018-05409-9
    [6] VEMURI G N, EITEMAN M A, MCEWEN J E, et al. Increasing nadh oxidation reduces overflow metabolism in Saccharomyces cerevisiae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(7): 2402-2407. doi: 10.1073/pnas.0607469104
    [7] HOU J, LAGES N F, OLDIGES M, et al. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2009, 11(4/5): 253-261. doi: 10.1016/j.ymben.2009.05.001
    [8] OVERKAMP K M, BAKKER B M, KOTTER P, et al. In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria[J]. Journal of Bacteriology, 2000, 182(10): 2823-2830. doi: 10.1128/JB.182.10.2823-2830.2000
    [9] PAHLMAN I L, LARSSON C, AVERET N, et al. Kinetic regulation of the mitochondrial glycerol-3-phosphate dehydrogenase by the external nadh dehydrogenase in Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 2002, 277(31): 27991-27995. doi: 10.1074/jbc.M204079200
    [10] ALBERTYN J, HOHMANN S, THEVELEIN J M, et al. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway[J]. Molecular and Cellular Biology, 1994, 14(6): 4135-4144.
    [11] ERIKSSON P, ANDRE L, ANSELL R, et al. Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1[J]. Molecular Microbiology, 1995, 17(1): 95-107. doi: 10.1111/j.1365-2958.1995.mmi_17010095.x
    [12] NORBECK J, PAHLMAN A K, AKHTAR N, et al. Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae: Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of GPP2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway[J]. Journal of Biological Chemistry, 1996, 271(23): 13875-13881. doi: 10.1074/jbc.271.23.13875
    [13] ANSELL R, GRANATH K, HOHMANN S, et al. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation[J]. EMBO Journal, 1997, 16(9): 2179-2187. doi: 10.1093/emboj/16.9.2179
    [14] KNUDSEN J D, CARLQUIST M, GORWA-GRAUSLUND M. NADH-dependent biosensor in Saccharomyces cerevisiae: Principle and validation at the single cell level[J]. AMB Express, 2014, 4(1): 81. doi: 10.1186/s13568-014-0081-4
    [15] AUZAT I, CHAPUY-REGAUD S, LE BRAS G, et al. The nadh oxidase of streptococcus pneumoniae: Its involvement in competence and virulence[J]. Molecular Microbiology, 1999, 34(5): 1018-1028. doi: 10.1046/j.1365-2958.1999.01663.x
    [16] JOHNSON C H, PRIGGE J T, WARREN A D, et al. Characterization of an alternative oxidase activity of histoplasma capsulatum[J]. Yeast, 2003, 20(5): 381-388. doi: 10.1002/yea.968
    [17] XU Y, LI Z. Utilization of ethanol for itaconic acid biosynthesis by engineered Saccharomyces cerevisiae[J]. FEMS Yeast Research, 2021, 21(6): 1-13.
    [18] WEI L J, KWAK S D, LIU J J, et al. Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2018, 115(7): 1793-1800.
    [19] MINENKO A N, NOVIKOVA L A, LUZIKOV V N, et al. Import of hybrid forms of CYP11A1 into yeast mitochondria[J]. Biochimica et Biophysica Acta, 2008, 1780(10): 1121-1130. doi: 10.1016/j.bbagen.2008.06.006
    [20] CONANT G C, WOLFE K H. Increased glycolytic flux as an outcome of whole-genome duplication in yeast[J]. Molecular Systems Biology, 2007, 3(1): 129.
    [21] LIN Z G, LI W H. Expansion of hexose transporter genes was associated with the evolution of aerobic fermentation in yeasts[J]. Molecular Biology and Evolution, 2011, 28(1): 131-142. doi: 10.1093/molbev/msq184
    [22] MALINA C, YU R, BJORKEROTH J, et al. Adaptations in metabolism and protein translation give rise to the crabtree effect in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(51): e2112836118. doi: 10.1073/pnas.2112836118
    [23] YU T, ZHOU Y J, HUANG M, et al. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis[J]. Cell, 2018, 174(6): 1549-1558.
    [24] GRUNING N M, RINNERTHALER M, BLUEMLEIN K, et al. Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells[J]. Cell Metabolism, 2011, 14(3): 415-427. doi: 10.1016/j.cmet.2011.06.017
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  117
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-06
  • 网络出版日期:  2022-05-14
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回