高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

基于刚度信息的取脉深度标准化研究

张垚 李锦 曹开杭 刘甜甜

张垚, 李锦, 曹开杭, 刘甜甜. 基于刚度信息的取脉深度标准化研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220104001
引用本文: 张垚, 李锦, 曹开杭, 刘甜甜. 基于刚度信息的取脉深度标准化研究[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220104001
ZHANG Yao, LI Jin, CAO Kaihang, LIU Tiantian. Research on Standardization of Pulse-Taking Depth Based on Stiffness Information[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220104001
Citation: ZHANG Yao, LI Jin, CAO Kaihang, LIU Tiantian. Research on Standardization of Pulse-Taking Depth Based on Stiffness Information[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220104001

基于刚度信息的取脉深度标准化研究

doi: 10.14135/j.cnki.1006-3080.20220104001
基金项目: 国家自然科学基金(52075172);上海市自然科学基金(19ZR1413300)
详细信息
    作者简介:

    张垚:作者简介:张 垚(1997—),男,江西上饶人,硕士生,主要研究方向为变刚度软体取脉。E-mail:zhangyao.0518@foxmail.com

    通讯作者:

    李 锦,E-mail: lijinme@ecust.edu.cn

  • 中图分类号: TH39

Research on Standardization of Pulse-Taking Depth Based on Stiffness Information

  • 摘要: 针对现有取脉设备以固定深度机械的提取脉搏信号,忽略个体差异,提出了一种融合个体特征的取脉深度标准化方法。该方法基于取脉按压深度和载荷信息建立刚度模型,以刚度为衡量标准进行最佳取脉深度辨识。为验证方法有效性,对6名志愿者左手寸、关、尺三部共进行18次脉搏采集,并提取脉搏信号的峰峰值和近似熵。由峰峰值和近似熵可知,新方法确定的取脉深度17次有效,即对应深度脉搏搏动强烈且稳定。证明了该方法的有效性和鲁棒性。

     

  • 图  1  脉搏采集平台

    Figure  1.  Pulse acquisition platform

    图  2  脉搏预处理框架

    Figure  2.  Pulse preprocessing framework

    图  3  脉搏峰峰值

    Figure  3.  Peak-to-peak value of pulse

    图  4  脉搏近似熵

    Figure  4.  Approximate entropy of pulse

    图  5  取脉过程中压力、刚度和刚度导数信息:(a) 压力F,(b) 刚度K,(c) 刚度导数dK

    Figure  5.  Pressure, stiffness and stiffness derivative information of pulse acquisition: (a) Pressure F, (b) Stiffness K, (c) Stiffness derivative dK

    图  6  1号受试者实验结果:(a)寸部,(b)关部,(c)尺部

    Figure  6.  Experiment results of subject No. 1: (a) Cun, (b) Guan, (c) Chi

    图  7  2号受试者实验结果:(a)寸部,(b)关部,(c)尺部

    Figure  7.  Experiment results of subject No. 2: (a) Cun, (b) Guan, (c) Chi

    图  8  5号受试者实验结果:(a)寸部,(b)关部,(c)尺部

    Figure  8.  Experiment results of subject No. 5: (a) Cun, (b) Guan, (c) Chi

    表  1  受试者基本信息和合适取脉区域Z与本文方法确定取脉深度PD

    Table  1.   The subjects’ basic characteristics and the suitable pulse-taking area Z, and the depth PD determined by the method in this paper

    Serial numberAgeSexBMIZ/mmPD/mm
    CunGuanChiCunGuanChi
    123Man18.394.47~5.184.59~5.605.37~6.734.534.866.08
    224Man22.044.67~5.594.40~6.125.10~6.805.245.236.64
    323Man22.224.95~5.955.12~6.615.90~6.995.335.536.32
    422Man22.434.94~5.905.74~7.576.76~8.355.286.707.85
    526Woman27.035.02~5.717.02~8.188.52~10.65.447.9510.43
    624Man29.045.61~6.984.34~6.807.07~9.105.915.256.86
    下载: 导出CSV
  • [1] LUKMAN S, HE Y L, HUI S C. Computational methods for Traditional Chinese Medicine: A survey[J]. Computer Methods and Programs in Biomedicine, 2007, 88(3): 283-294. doi: 10.1016/j.cmpb.2007.09.008
    [2] KING E, COBBIN D, RYAN D. The reliable measurement of radial pulse: gender differences in pulse profiles[J]. Acupuncture in Medicine Journal of the British Medical Acupuncture Society, 2002, 20(4): 160-167. doi: 10.1136/aim.20.4.160
    [3] FU Y, ZHAO S A, ZHU R. A Wearable Multifunctional Pulse Monitor Using Thermosensation-Based Flexible Sensors[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(5): 1412-1421. doi: 10.1109/TBME.2018.2873754
    [4] JIN C L, XIA C M, ZHANG S Y, et al. A Wearable Combined Wrist Pulse Measurement System Using Airbags for Pressurization[J]. Sensors, 2019, 19(2): 386-400. doi: 10.3390/s19020386
    [5] WANG D M, ZHANG D, LU G M. A robust signal preprocessing framework for wrist pulse analysis[J]. Biomedical signal processing and control, 2016, 23: 62-75. doi: 10.1016/j.bspc.2015.08.002
    [6] SHU J J, SUN Y G. Developing classification indices for Chinese pulse diagnosis[J]. Complementary Therapies in Medicine, 2007, 15(3): 190-198. doi: 10.1016/j.ctim.2006.06.004
    [7] LEE B J, JEON Y J, BAE J H, et al. Gender differences in arterial pulse wave and anatomical properties in healthy Korean adults[J]. European Journal of Integrative Medicine, 2019, 25: 41-48. doi: 10.1016/j.eujim.2018.11.004
    [8] 张亚丹. 寸关尺三部定位的量化研究[D]. 上海: 上海中医药大学, 2016.
    [9] LEE B J, JEON Y J, KIM J Y. Association of obesity with anatomical and physical indices related to the radial artery in Korean adults[J]. European Journal of Integrative Medicine, 2017, 14: 22-27. doi: 10.1016/j.eujim.2017.08.007
    [10] HEFFERNAN K S, JAE S Y, WILUND K R, et al. Racial differences in central blood pressure and vascular function in young men[J]. American Journal of Physiology, 2008, 295(6): 2380-2387.
    [11] YIM Y K, LEE C, LEE H J, et al. Gender and Measuring-position Differences in the Radial Pulse of Healthy Individuals[J]. Journal of Acupuncture & Meridian Studies, 2014, 7(6): 324-330.
    [12] LEE Y J, LEE J, LEE H J, et al. A Study on Correlation between BMI and Oriental Medical Pulse Diagnosis Using Ultrasonic Wave[J]. Springer Berlin Heidelberg, 2009, 23: 2052-2055.
    [13] SMALLS L K, WICKEET R R, VISSCHER M O. Effect of dermal thickness, tissue composition, and body site on skin biomechanical properties[J]. Skin Research & Technology, 2010, 12(1): 43-49.
    [14] CHUNG C Y, CHENG Y W, LUO C H. Neural network study for standardizing pulse-taking depth by the width of artery[J]. Computers in Biology & Medicine, 2015, 57: 26-31.
    [15] PINCUS S, PINCUS S M. Approximate entropy (ApEn) as a complexity measure[J]. Chaos, 1995, 5(1): 110-117. doi: 10.1063/1.166092
    [16] ZHANG Z, CHEN Z Y, ZHOU Y, et al. Construction of rules for seizure prediction based on approximate entropy[J]. Clinical neurophysiology, 2014, 125(10): 1959-1966. doi: 10.1016/j.clinph.2014.02.017
    [17] UGARTE J P, OROZCO-DUQUE A, TOBON C, et al. Dynamic Approximate Entropy Electroanatomic Maps Detect Rotors in a Simulated Atrial Fibrillation Model[J]. Plos One, 2014, 9(12): e114577. doi: 10.1371/journal.pone.0114577
    [18] RAJENDRA U R, FUJITA H, SUDARSHAN V K, et al. Application of entropies for automated diagnosis of epilepsy using EEG signals: A review[J]. Knowledge-Based Systems, 2015, 88(C): 85-96.
    [19] NIE J, JI M N, CHU Y, et al. Human pulses reveal health conditions by a piezoelectret sensor via the approximate entropy analysis[J]. Nano Energy, 2019, 58: 528-535. doi: 10.1016/j.nanoen.2019.01.092
    [20] XU L S, MENG Q H, QI X H, et al. Morphology Variability Analysis of Wrist Pulse Waveform for Assessment of Arteriosclerosis Status[J]. Journal of Medical Systems, 2010, 34(3): 331-339. doi: 10.1007/s10916-008-9245-6
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  18
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-04
  • 网络出版日期:  2022-05-26

目录

    /

    返回文章
    返回