Effect of Alkyl Chain Structure on the Encapsulation of Curcumin by Tween Surfactants
-
摘要: 姜黄素在3种吐温聚集体中的稳定性和结合常数的大小顺序为:吐温-85囊泡 > 吐温-60囊泡 > 吐温-80胶束。紫外吸收光谱和荧光发射光谱测定结果表明姜黄素以疏水作用为主要驱动力包载于吐温聚集体的烷基链疏水区域。核磁共振氢谱测定结果表明姜黄素的包载位置和作用力与吐温的烷基链结构有密切关系。相比粒径约为92 nm的吐温-60囊泡,烷基链中含有双键的吐温-80的疏水区域生成了具有疏松排列结构的吐温-80胶束,这使得姜黄素表现出较低的稳定性、结合常数,以及紫外吸收强度和荧光发射强度。带有3条不饱和烷基链的吐温-85能够生成粒径约为150 nm的囊泡,其双分子层具有最高疏水性,因此其对姜黄素有最好的包载效果。Abstract: The order of the stability and binding constant of curcumin encapsulated by three Tween aggregates is: Tween-85 vesicles > Tween-60 vesicles > Tween-80 micelles. Upon UV and fluorescence measurements, it is found that curcumin is encapsulated in the hydrophobic region of the alkyl chains of Tween aggregates driven by hydrophobic interaction. The 1H-NMR data confirm that the encapsulation position and force of curcumin are closely related to the alkyl chain structure of Tween surfactants. Compared with Tween-60 vesicles with a particle size of about 92 nm, the micelles formed by Tween-80 containing double bonds in the alkyl chain have loosely arranged hydrophobic region. Therefore, curcumin encapsulated by Tween-80 micelles exhibits lower stability, binding constant, UV absorption and fluorescence emission intensities. Tween-85 with three unsaturated alkyl chains can generate vesicles with a particle size of about 150 nm, and its bilayer has the highest hydrophobicity which shows the best encapsulation effect on curcumin.
-
Key words:
- Tween surfactant /
- curcumin /
- double bond /
- vesicle /
- hydrophobic effect
-
表 1 吐温表面活性剂包载姜黄素前后分子中质子的化学位移
Table 1. Chemical shifts of protons of Tween surfactants before and after encapsulating curcumin
Proton δ11) δ22) Δδ3) Tween-60 Tween-80 Tween-85 Tween-60 Tween-80 Tween-85 Tween-60 Tween-80 Tween-85 a 0.88 0.88 0.89 0.88 0.88 0.89 0 0 0 b 1.29 1.31 1.29 1.28 1.30 1.28 −0.01 −0.01 −0.01 c 1.59 2.02 2.02 1.58 2.00 2.01 −0.01 −0.02 −0.01 d 2.33 5.32 5.32 2.32 5.31 5.31 −0.01 −0.01 −0.01 e 4.21 1.59 1.58 4.20 1.57 1.58 −0.01 −0.02 0 f 3.69 2.31 2.31 3.69 2.30 2.31 0 −0.01 0 g — 4.21 4.21 — 4.20 4.21 — −0.01 0 h — 3.69 3.69 — 3.69 3.69 — 0 0 1) Before encapsulating curcumin; 2) After encapsulating curcumin; 3) Δδ=δ2−δ1 -
[1] JAKUBEK M, KEJIK Z, KAPLANEK R, et al. Strategy for improved therapeutic efficiency of curcumin in the treatment of gastric cancer[J]. Biomedicine & Pharmacotherapy, 2019, 118: 109278. [2] LIU W, PAN N, HAN Y, et al. Solubilization, stability and antioxidant activity of curcumin in a novel surfactant-free microemulsion system[J]. LWT, 2021, 147: 111583. doi: 10.1016/j.lwt.2021.111583 [3] TETER B, MORIHARA T, LIM G P, et al. Curcumin restores innate immune Alzheimer's disease risk gene expression to ameliorate Alzheimer pathogenesis[J]. Neurobiology of Disease, 2019, 127: 432-448. doi: 10.1016/j.nbd.2019.02.015 [4] LIU Z, SMART J D, PANNALA A S. Recent developments in formulation design for improving oral bioavailability of curcumin: A review[J]. Journal of Drug Delivery Science and Technology, 2020, 60(6): 102082. [5] MANDAL S, GHOSH S, BANIK D, et al. An investigation into the effect of the structure of bile salt aggregates on the binding interactions and ESIHT dynamics of curcumin: A photophysical approach to probe bile salt aggregates as a potential drug carrier[J]. The Journal of Physical Chemistry B, 2013, 117(44): 13795-13807. doi: 10.1021/jp407824t [6] LEUNG M H M, COLANGELO H, KEE T W. Encapsulation of curcumin in cationic micelles suppresses alkaline hydrolysis[J]. Langmuir, 2008, 24(11): 5672-5675. doi: 10.1021/la800780w [7] MANDAL S, BANERJEE C, GHOSH S, et al. Modulation of the photophysical properties of curcumin in nonionic surfactant (Tween-20) forming micelles and niosomes: A comparative study of different microenvironments[J]. The Journal of Physical Chemistry B, 2013, 117(23): 6957-6968. doi: 10.1021/jp403724g [8] 刘调调, 杨白雪, 郭瑛玉, 等. 表面活性剂的复配对姜黄素的增溶及保护作用[J]. 药学学报, 2019, 54(1): 8-13. [9] WANG X, GAO Y. Effects of length and unsaturation of the alkyl chain on the hydrophobic binding of curcumin with Tween micelles[J]. Food Chemistry, 2018, 246: 242-248. doi: 10.1016/j.foodchem.2017.11.024 [10] MONDAL S, GHOSH S. Spectroscopic study on the interaction of curcumin with single chain and gemini surfactants[J]. Chemical Physics Letters, 2021, 762: 138144. doi: 10.1016/j.cplett.2020.138144 [11] 帅洁, 胡佳杰, 涂燕, 等. 光响应小分子/表面活性剂自组装体的宏观光响应行为[J]. 华东理工大学学报 (自然科学版), 2020, 46(5): 653-664. [12] STEPHANOS J J. Drug-protein interactions: Two-site binding of heterocyclic ligands to a monomeric hemoglobin[J]. Journal of Inorganic Biochemistry, 1996, 62(3): 155-169. doi: 10.1016/0162-0134(95)00144-1 [13] SAMANTA S, GHOSH P. Coalescence of bubbles and stability of foams in aqueous solutions of Tween surfactants[J]. Chemical Engineering Research and Design, 2011, 89(11): 2344-2355. doi: 10.1016/j.cherd.2011.04.006 [14] CIRIN D, KRSTONOSIC V, POSA M. Properties of poloxamer 407 and polysorbate mixed micelles: Influence of polysorbate hydrophobic chain[J]. Journal of Industrial and Engineering Chemistry, 2017, 47: 194-201. doi: 10.1016/j.jiec.2016.11.032 [15] 赵明, 杨声, 孙永军, 等. 电导法测定阳离子型表面活性剂临界胶束浓度实验研究[J]. 化学世界, 2015, 56(3): 143-145. [16] 王岩, 赵田红. 一种阴离子表面活性剂的研制[J]. 重庆科技学院学报(自然科学版), 2013, 15(5): 90-92. [17] AKBAR J R, DEUBRY R, MARANGONI D G, et al. Interactions between gemini and nonionic pharmaceutical surfactants[J]. Canadian Journal of Chemistry, 2010, 88(12): 1262-1270. doi: 10.1139/V10-135 [18] CIRIN D M, POSA M M, KRSTONOSIC V S, et al. Conductometric study of sodium dodecyl sulfate-nonionic surfactant (Triton X-100, Tween 20, Tween 60, Tween 80 or Tween 85) mixed micelles in aqueous solution[J]. Hemijska Industrija, 2012, 66(1): 21-28. doi: 10.2298/HEMIND110612059C [19] SCHAFER K, KOLLI H B, KILLINGMOE M, et al. Supramolecular packing drives morphological transitions of charged surfactant micelles[J]. Angewandte Chemie, 2020, 132(42): 18750-18757. doi: 10.1002/ange.202004522 [20] KALER E W, HERRINGTON K L, MURTHY A K, et al. Phase behavior and structures of mixtures of anionic and cationic surfactants[J]. The Journal of Physical Chemistry, 1992, 96(16): 6698-6707. doi: 10.1021/j100195a033 [21] AMANI A, YORK P, WAARD H, et al. Molecular dynamics simulation of a polysorbate 80 micelle in water[J]. Soft Matter, 2011, 7(6): 2900-2908. doi: 10.1039/c0sm00965b [22] SAHU A K, MISHRA J, MISHRA A K. Introducing Tween-curcumin niosomes: Preparation, characterization and microenvironment study[J]. Soft Matter, 2020, 16(7): 1779-1791. doi: 10.1039/C9SM02416F [23] 郝兴坤, 郑雨晴, 王倩, 等. 吐温表面活性剂囊泡对姜黄素的包载作用[J]. 化学通报, 2021, 84(11): 1243-1247. [24] DI MARZIO L, MARIANECCI C, PETRONE M, et al. Novel pH-sensitive non-ionic surfactant vesicles: Comparison between Tween 21 and Tween 20[J]. Colloids and Surfaces B:Biointerfaces, 2011, 82(1): 18-24. doi: 10.1016/j.colsurfb.2010.08.004 [25] HUANG Y, RAO Y, CHEN J, et al. Polysorbate cationic synthetic vesicle for gene delivery[J]. Journal of Biomedical Materials Research: Part A, 2011, 96(3): 513-519. [26] COVIELLO T, TROTTA A M, MARIANECCI C, et al. Gel-embedded niosomes: Preparation, characterization and release studies of a new system for topical drug delivery[J]. Colloids and Surfaces B: Biointerfaces, 2015, 125: 291-299. doi: 10.1016/j.colsurfb.2014.10.060 [27] LU X, FAN L, SONG C, et al. Lubrication and dynamically controlled drug release properties of Tween 85/Tween 80/H2O lamellar liquid crystals[J]. Langmuir, 2021, 37(23): 7067-7077. doi: 10.1021/acs.langmuir.1c00659 [28] RAY G B, CHAKRABORTY I, MOULIK S P. Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity[J]. Journal of Colloid and Interface Science, 2006, 294(1): 248-254. doi: 10.1016/j.jcis.2005.07.006 [29] KE D, YANG Q, YANG M, et al. Effect of the spacer length on the electrostatic interactions of cationic gemini surfactant micelles with trianionic curcumin[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 436: 80-86. [30] ABOUDIAB B, TEHRANI-BAGHA A R, PATRA D. Curcumin degradation kinetics in micellar solutions: Enhanced stability in the presence of cationic surfactants[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 592: 124602. doi: 10.1016/j.colsurfa.2020.124602 [31] WANG Y J, PAN M H, CHENG A L, et al. Stability of curcumin in buffer solutions and characterization of its degradation products[J]. Journal of Pharmaceutical and Biomedical Analysis, 1997, 15(12): 1867-1876. doi: 10.1016/S0731-7085(96)02024-9 [32] KARANTH S, IYYASWAMI R. Analysis of ionic and nonionic surfactants blends used for the reverse micellar extraction of Lactoperoxidase from whey[J]. Asia-Pacific Journal of Chemical Engineering, 2021, 16(2): e2590. [33] IWUNZE M O. Binding and distribution characteristics of curcumin solubilized in CTAB micelle[J]. Journal of Molecular Liquids, 2004, 111(1/3): 161-165. doi: 10.1016/j.molliq.2003.12.013 [34] ZHOU H, YANG Q, WANG X. Spectrometric study on the binding of curcumin with AOT: Effect of micelle-to-vesicle transition[J]. Food Chemistry, 2014, 161: 136-141. doi: 10.1016/j.foodchem.2014.03.129 [35] ZSILA F, BIKADI Z, SIMONYI M. Molecular basis of the cotton effects induced by the binding of curcumin to human serum albumin[J]. Tetrahedron:Asymmetry, 2003, 14(16): 2433-2444. doi: 10.1016/S0957-4166(03)00486-5 [36] SAHU A, KASOJU N, BORA U. Fluorescence study of the curcumin-casein micelle complexation and its application as a drug nanocarrier to cancer cells[J]. Biomacromolecules, 2008, 9(10): 2905-2912. doi: 10.1021/bm800683f [37] WANG F, WU X, WANG F, et al. The sensitive fluorimetric method for the determination of curcumin using the enhancement of mixed micelle[J]. Journal of Fluorescence, 2006, 16(1): 53-59. doi: 10.1007/s10895-005-0025-0 [38] GHOSH M, SINGH A T K, XU W, et al. Curcumin nanodisks: Formulation and characterization[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2011, 7(2): 162-167. doi: 10.1016/j.nano.2010.08.002 [39] GHOSH S, MONDAL S, DAS S, et al. Spectroscopic investigation of interaction between crystal violet and various surfactants (cationic, anionic, nonionic and gemini) in aqueous solution[J]. Fluid Phase Equilibria, 2012, 332: 1-6. doi: 10.1016/j.fluid.2012.06.019 [40] 张琼, 李林, 魏东芝, 等. 胆酸盐/脂类混合胶束对疏水性姜黄素的增溶性能[J]. 华东理工大学学报(自然科学版), 2010, 36(5): 639-644. doi: 10.3969/j.issn.1006-3080.2010.05.007 [41] LIU Y, LIU M, YAN H, et al. Enhanced solubility of bisdemethoxycurcumin by interaction with Tween surfactants: Spectroscopic and coarse-grained molecular dynamics simulation studies[J]. Journal of Molecular Liquids, 2021, 323: 115073. doi: 10.1016/j.molliq.2020.115073 -