高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

烷基链结构对吐温表面活性剂包载姜黄素的影响

郑雨晴 王小永

郑雨晴, 王小永. 烷基链结构对吐温表面活性剂包载姜黄素的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220103001
引用本文: 郑雨晴, 王小永. 烷基链结构对吐温表面活性剂包载姜黄素的影响[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20220103001
ZHENG Yuqing, WANG Xiaoyong. Effect of Alkyl Chain Structure on the Encapsulation of Curcumin by Tween Surfactants[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220103001
Citation: ZHENG Yuqing, WANG Xiaoyong. Effect of Alkyl Chain Structure on the Encapsulation of Curcumin by Tween Surfactants[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20220103001

烷基链结构对吐温表面活性剂包载姜黄素的影响

doi: 10.14135/j.cnki.1006-3080.20220103001
基金项目: 国家自然科学基金项目(21573071)
详细信息
    作者简介:

    郑雨晴(1997—),女,硕士生,研究方向为界面胶体化学。E-mail:y30190329@mail.ecust.edu.cn

    通讯作者:

    王小永,E-mail:xiaoyong@ecust.edu.cn

  • 中图分类号: O648

Effect of Alkyl Chain Structure on the Encapsulation of Curcumin by Tween Surfactants

  • 摘要: 姜黄素在3种吐温聚集体中的稳定性和结合常数的大小顺序为:吐温-85囊泡 > 吐温-60囊泡 > 吐温-80胶束。通过紫外和荧光测定发现姜黄素以疏水作用为主要驱动力包载于吐温聚集体的烷基链疏水区域。核磁共振氢谱数据证实姜黄素的包载位置和作用力与吐温的烷基链结构有密切关系。相比粒径约为92 nm的吐温-60囊泡,烷基链中含有双键的吐温-80生成了具有疏松排列疏水区域的吐温-80胶束,使姜黄素表现出较低的稳定性、结合常数、以及紫外吸收和荧光发射强度。带有3条不饱和烷基链的吐温-85能够生成粒径约为150 nm的囊泡,其双分子层具有最高疏水性,因此对姜黄素有最好的包载效果。

     

  • 图  1  吐温-60、吐温-80和吐温-85的表面张力曲线

    Figure  1.  Surface tension curves of Tween-60, Tween-80 and Tween-85

    图  2  吐温-60、吐温-80和吐温-85在1 mmol/L时的表观状态

    Figure  2.  Appearance of Tween-60, Tween-80 and Tween-85 at 1 mmol/L

    图  3  吐温-60、吐温-80和吐温-85的粒径分布曲线

    Figure  3.  Size distribution curves of Tween-60, Tween-80 and Tween-85

    图  4  游离姜黄素和吐温聚集体包载姜黄素的降解曲线

    Figure  4.  Degradation curves of free curcumin and curcumin encapsulated by Tween aggregates

    图  5  吐温-60、吐温-80和吐温-85聚集体的1/(A-A0)对1/[curcumin]线性拟合曲线

    Figure  5.  1/(A-A0) vs.1/[Curcumin] fitting curves in Tween-60, Tween-80 and Tween-85 aggregates

    图  6  游离姜黄素和吐温聚集体包载姜黄素的紫外吸收光谱(a)和荧光发射光谱(b)

    Figure  6.  UV absorption spectra (a) and fluorescence emission spectra (b) of free curcumin and curcumin encapsulated by Tween aggregates

    图  7  吐温-60、吐温-80和吐温-85的1H NMR图谱。

    Figure  7.  1H NMR spectra of Tween-60, Tween-80 and Tween-85

    The letters represent the protons of Tween surfactants in 1H NMR spectra

    Table  1.   Chemical shifts of protons of Tween surfactants

    Groupδ1 (Before)δ2 (After)Δδ (δ2−δ1)
    Tween-60Tween-80Tween-85Tween-60Tween-80Tween-85Tween-60Tween-80Tween-85
    a 0.88 0.88 0.89 0.88 0.88 0.89 0 0 0
    b 1.29 1.31 1.29 1.28 1.30 1.28 −0.01 −0.01 −0.01
    c 1.59 2.02 2.02 1.58 2.00 2.01 −0.01 −0.02 −0.01
    d 2.33 5.32 5.32 2.32 5.31 5.31 −0.01 −0.01 −0.01
    e 4.21 1.59 1.58 4.20 1.57 1.58 −0.01 −0.02 0
    f 3.69 2.31 2.31 3.69 2.30 2.31 0 −0.01 0
    g 4.21 4.21 4.20 4.21 −0.01 0
    h 3.69 3.69 3.69 3.69 0 0
    下载: 导出CSV
  • [1] JAKUBEK M, KEJIK Z, KAPLANEK R, et al. Strategy for improved therapeutic efficiency of curcumin in the treatment of gastric cancer[J]. Biomedicine & Pharmacotherapy, 2019, 118: 109278.
    [2] LIU W, PAN N, HAN Y, et al. Solubilization, stability and antioxidant activity of curcumin in a novel surfactant-free microemulsion system[J]. LWT, 2021, 147: 111583. doi: 10.1016/j.lwt.2021.111583
    [3] TETER B, MORIHARA T, LIM G P, et al. Curcumin restores innate immune Alzheimer's disease risk gene expression to ameliorate Alzheimer pathogenesis[J]. Neurobiology of disease, 2019, 127: 432-448. doi: 10.1016/j.nbd.2019.02.015
    [4] LIU Z, SMART J D, PANNALA A S. Recent developments in formulation design for improving oral bioavailability of curcumin: a review[J]. Journal of Drug Delivery Science and Technology, 2020: 102082.
    [5] MANDAL S, GHOSH S, BANIK D, et al. An investigation into the effect of the structure of bile salt aggregates on the binding interactions and ESIHT dynamics of curcumin: A photophysical approach to probe bile salt aggregates as a potential drug carrier[J]. The Journal of Physical Chemistry B, 2013, 117(44): 13795-13807. doi: 10.1021/jp407824t
    [6] LEUNG M H M, COLANGELO H, KEE T W. Encapsulation of curcumin in cationic micelles suppresses alkaline hydrolysis[J]. Langmuir, 2008, 24(11): 5672-5675. doi: 10.1021/la800780w
    [7] MANDAL S, BANERJEE C, GHOSH S, et al. Modulation of the photophysical properties of curcumin in nonionic surfactant (Tween-20) forming micelles and niosomes: A comparative study of different microenvironments[J]. The Journal of Physical Chemistry B, 2013, 117(23): 6957-6968. doi: 10.1021/jp403724g
    [8] 刘调调, 杨白雪, 郭瑛玉, 等. 表面活性剂的复配对姜黄素的增溶及保护作用[J]. 药学学报, 2019, 54(1): 8-13.
    [9] WANG X, GAO Y. Effects of length and unsaturation of the alkyl chain on the hydrophobic binding of curcumin with Tween micelles[J]. Food chemistry, 2018, 246: 242-248. doi: 10.1016/j.foodchem.2017.11.024
    [10] MONDAL S, GHOSH S. Spectroscopic study on the interaction of curcumin with single chain and gemini surfactants[J]. Chemical Physics Letters, 2021, 762: 138144. doi: 10.1016/j.cplett.2020.138144
    [11] 帅洁, 胡佳杰, 涂燕, 等. 光响应小分子/表面活性剂自组装体的宏观光响应行为[J]. 华东理工大学学报 (自然科学版), 2020, 46(5): 653-664.
    [12] SAMANTA S, GHOSH P. Coalescence of bubbles and stability of foams in aqueous solutions of Tween surfactants[J]. Chemical Engineering Research and Design, 2011, 89(11): 2344-2355. doi: 10.1016/j.cherd.2011.04.006
    [13] CIRIN D, KRSTONOSIC V, POSA M. Properties of poloxamer 407 and polysorbate mixed micelles: Influence of polysorbate hydrophobic chain[J]. Journal of industrial and engineering chemistry, 2017, 47: 194-201. doi: 10.1016/j.jiec.2016.11.032
    [14] 赵明, 杨声, 孙永军, 等. 电导法测定阳离子型表面活性剂临界胶束浓度实验研究[J]. 化学世界, 2015, 56(3): 143-145.
    [15] 王岩, 赵田红. 一种阴离子表面活性剂的研制[J]. 重庆科技学院学报:自然科学版, 2013, 15(5): 90-92.
    [16] AKBAR J R, DEUBRY R, MARANGONI D G, et al. Interactions between gemini and nonionic pharmaceutical surfactants[J]. Canadian Journal of Chemistry, 2010, 88(12): 1262-1270. doi: 10.1139/V10-135
    [17] CIRIN D M, POSA M M, KRSTONOSIC V S, et al. Conductometric study of sodium dodecyl sulfate-nonionic surfactant (Triton X-100, Tween 20, Tween 60, Tween 80 or Tween 85) mixed micelles in aqueous solution[J]. Hemijska industrija, 2012, 66(1): 21-28. doi: 10.2298/HEMIND110612059C
    [18] SCHAFER K, KOLLI H B, KILLINGMOE CHRISTENSEN M, et al. Supramolecular packing drives morphological transitions of charged surfactant micelles[J]. Angewandte Chemie, 2020, 132(42): 18750-18757. doi: 10.1002/ange.202004522
    [19] KALER E W, HERRINGTON K L, MURTHY A K, et al. Phase behavior and structures of mixtures of anionic and cationic surfactants[J]. The Journal of Physical Chemistry, 1992, 96(16): 6698-6707. doi: 10.1021/j100195a033
    [20] AMANI A, YORK P, WAARD H, et al. Molecular dynamics simulation of a polysorbate 80 micelle in water[J]. Soft Matter, 2011, 7(6): 2900-2908. doi: 10.1039/c0sm00965b
    [21] SAHU A K, MISHRA J, MISHRA A K. Introducing Tween-curcumin niosomes: Preparation, characterization and microenvironment study[J]. Soft matter, 2020, 16(7): 1779-1791. doi: 10.1039/C9SM02416F
    [22] 郝兴坤, 郑雨晴, 王倩, 等. 吐温表面活性剂囊泡对姜黄素的包载作用[J]. 化学通报, 2021, 84(11): 1243-1247.
    [23] DI MARZIO L, MARIANECCI C, PETRONE M, et al. Novel pH-sensitive non-ionic surfactant vesicles: Comparison between Tween 21 and Tween 20[J]. Colloids and Surfaces B:Biointerfaces, 2011, 82(1): 18-24. doi: 10.1016/j.colsurfb.2010.08.004
    [24] HUANG Y, RAO Y, CHEN J, et al. Polysorbate cationic synthetic vesicle for gene delivery[J]. Journal of biomedical materials research Part A, 2011, 96(3): 513-519.
    [25] COVIELLO T, TROTTA A M, MARIANECCI C, et al. Gel-embedded niosomes: preparation, characterization and release studies of a new system for topical drug delivery[J]. Colloids and surfaces B:biointerfaces, 2015, 125: 291-299. doi: 10.1016/j.colsurfb.2014.10.060
    [26] LU X, FAN L, SONG C, et al. Lubrication and Dynamically Controlled Drug Release Properties of Tween 85/Tween 80/H2O Lamellar Liquid Crystals[J]. Langmuir, 2021, 37(23): 7067-7077. doi: 10.1021/acs.langmuir.1c00659
    [27] RAY G B, CHAKRABORTY I, MOULIK S P. Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity[J]. Journal of colloid and interface science, 2006, 294(1): 248-254. doi: 10.1016/j.jcis.2005.07.006
    [28] KE D, YANG Q, YANG M, et al. Effect of the spacer length on the electrostatic interactions of cationic gemini surfactant micelles with trianionic curcumin[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 436: 80-86.
    [29] ABOUDIAB B, TEHRANI-BAGHA A R, Patra D. Curcumin degradation kinetics in micellar solutions: Enhanced stability in the presence of cationic surfactants[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 592: 124602. doi: 10.1016/j.colsurfa.2020.124602
    [30] WANG Y J, PAN M H, CHENG A L, et al. Stability of curcumin in buffer solutions and characterization of its degradation products[J]. Journal of pharmaceutical and biomedical analysis, 1997, 15(12): 1867-1876. doi: 10.1016/S0731-7085(96)02024-9
    [31] KARANTH S, IYYASWAMI R. Analysis of ionic and nonionic surfactants blends used for the reverse micellar extraction of Lactoperoxidase from whey[J]. Asia‐Pacific Journal of Chemical Engineering, 2021, 16(2): e2590.
    [32] STEPHANOS J J. Drug-protein interactions: two-site binding of heterocyclic ligands to a monomeric hemoglobin[J]. Journal of inorganic biochemistry, 1996, 62(3): 155-169. doi: 10.1016/0162-0134(95)00144-1
    [33] IWUNZE M O. Binding and distribution characteristics of curcumin solubilized in CTAB micelle[J]. Journal of molecular liquids, 2004, 111(1-3): 161-165. doi: 10.1016/j.molliq.2003.12.013
    [34] ZHOU H, YANG Q, WANG X. Spectrometric study on the binding of curcumin with AOT: Effect of micelle-to-vesicle transition[J]. Food chemistry, 2014, 161: 136-141. doi: 10.1016/j.foodchem.2014.03.129
    [35] ZSILA F, BIKADI Z, SIMONYI M. Molecular basis of the cotton effects induced by the binding of curcumin to human serum albumin[J]. Tetrahedron:Asymmetry, 2003, 14(16): 2433-2444. doi: 10.1016/S0957-4166(03)00486-5
    [36] SAHU A, KASOJU N, BORA U. Fluorescence study of the curcumin-casein micelle complexation and its application as a drug nanocarrier to cancer cells[J]. Biomacromolecules, 2008, 9(10): 2905-2912. doi: 10.1021/bm800683f
    [37] WANG F, WU X, WANG F, et al. The sensitive fluorimetric method for the determination of curcumin using the enhancement of mixed micelle[J]. Journal of Fluorescence, 2006, 16(1): 53-59. doi: 10.1007/s10895-005-0025-0
    [38] GHOSH M, SINGH A T K, XU W, et al. Curcumin nanodisks: formulation and characterization[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2011, 7(2): 162-167. doi: 10.1016/j.nano.2010.08.002
    [39] GHOSH S, MONDAL S, DAS S, et al. Spectroscopic investigation of interaction between crystal violet and various surfactants (cationic, anionic, nonionic and gemini) in aqueous solution[J]. Fluid Phase Equilibria, 2012, 332: 1-6. doi: 10.1016/j.fluid.2012.06.019
    [40] 张琼, 李林, 魏东芝, 等. 胆酸盐/脂类混合胶束对疏水性姜黄素的增溶性能[J]. 华东理工大学学报(自然科学版), 2010, 36(5): 639-644. doi: 10.3969/j.issn.1006-3080.2010.05.007
    [41] LIU Y, LIU M, YAN H, et al. Enhanced solubility of bisdemethoxycurcumin by interaction with Tween surfactants: Spectroscopic and coarse-grained molecular dynamics simulation studies[J]. Journal of Molecular Liquids, 2021, 323: 115073. doi: 10.1016/j.molliq.2020.115073
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  3
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-03
  • 网络出版日期:  2022-05-12

目录

    /

    返回文章
    返回