A new stage-wise superstructure of heat transfer network and its application
-
摘要: 换热网络优化是一种有效的能量回收方式。然而,拥有较大换热网络结构寻优空间的模型往往是具有非线性、非凸性的复杂混合整数非线性规划(MINLP)模型,常常难以得到可行解。基于换热网络分级超结构,构建了一个包含流股分流、等温混合、流股回流非等温混合的新型换热网络多级超结构并设置全线性约束条件,可以在增加换热网络寻优空间的同时,大幅提升MINLP模型可求解性。通过两个文献案例验证流股分流、流股回流及非等温混合对换热网络寻优的贡献,证明了该模型的有效性和适用性。Abstract: Optimization of heat exchanger network is an effective way of energy recovery. However, the model with large optimization space of heat exchanger network is often a complex mixed-integer nonlinear programming (MINLP) model with nonlinear and non-convexity constraints, and difficult to get a feasible solution. In this paper, based on the stage-wise superstructure, a new type of heat exchanger network contains flow split, reflux and non-isothermal mixing was built, and while increasing the optimization space of heat exchange network, linear constraints were set to greatly improve the solvability of MINLP model. Two cases in literature were used to verify the contribution of flow split, reflux, isothermal mixing and non-isothermal mixing to the optimization of heat exchanger network, and the effectiveness and applicability of the model.
-
Key words:
- heat exchanger network /
- the stage-wise superstructure /
- flow split /
- reflux /
- non-isothermal mixing
-
表 1 案例1流股数据
Table 1. Data for example 1
Stream Tin/℃ Tout/℃ Fcp/(t·h−1) H1 175 45 10 H2 125 65 40 HU 180 179 - C1 20 155 20 C2 40 112 15 CU 15 25 - 表 2 案例1结果对比
Table 2. Solution comparisons for example 1
表 3 案例2流股数据
Table 3. Data for example 2
Steram Tin/K Tout/K Fcp/(kW·K−1) H1 500 320 6 H2 480 380 4 H3 460 360 6 H4 380 360 20 H5 380 320 12 C1 290 660 18 HU 700 700 - CU 300 320 - -
[1] GUNDEPSEN T, NAESS L. The synthesis of cost optimal heat exchanger networks: An industrial review of the state of the art[J]. Heat Recovery Systems & Chp, 1990, 12(6): 503-530. [2] JEZOWSKI J. Heat exchanger network grassroot and retrofit design. The review of the state-of-the art: part I. Heat exchanger network targeting and insight based methods of synthesis[J]. Hungarian Journal of Industrial Chemistry, 1994, 22(4): 279-294. [3] 陈鹏, 罗娜. 基于竞争机制差分进化算法的无分流换热网络优化[J]. 华东理工大学学报(自然科学版), 2019, 45(06): 970-979. [4] FURMAN K C, SAHINIDIS N V. A Critical Review and Annotated Bibliography for Heat Exchanger Network Synthesis in the 20th Century[J]. Industrial & Engineering Chemistry Research, 2002, 41(10): 2335-2370. [5] LINNHOFF B, FLOWER J R. Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks[J]. Aiche Journal, 2010, 24(4): 633-642. [6] LINNHOFF B, FLOWER J R. Synthesis of heat exchanger networks: II. Evolutionary generation of networks with various criteria of optimality[J]. Aiche Journal, 1978, 24: 642-654. doi: 10.1002/aic.690240412 [7] LINNHOFF B, HINDMARSH E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5): 745-763. doi: 10.1016/0009-2509(83)80185-7 [8] AHMAD S, LINNHOFF B, SMITH R. Cost optimum heat exchanger networks—2. targets and design for detailed capital cost models[J]. Computers & Chemical Engineering, 1990, 14(7): 751-767. [9] LINNHOFF B, AHMAD S. Cost optimum heat exchanger networks—1. Minimum energy and capital using simple models for capital cost[J]. Computers & Chemical Engineering, 1990, 14(7): 729-750. [10] TOWNSEND D W, LINNHOFF B. Surface area targets for heat exchanger networks in process design[C]. IChemE Annual Research Meeting, Bath UK, 1984. [11] CERDA J, WESTERBURG A W. Synthesizing heat exchanger networks having restricted stream/stream matches using transportation problem formulations[J]. Chemical Engineering Science, 1983, 38(10): 1723-1740. doi: 10.1016/0009-2509(83)85029-5 [12] PAPOULIAS S A, GROSSMANN I E. A structural optimization approach in process synthesis—II: Heat recovery networks[J]. Computers & Chemical Engineering, 1983, 7(6): 707-721. [13] GUNDERSEN T, GROSSMANN I E. Improved optimization strategies for automated heat exchanger network synthesis through physical insights[J]. Computers & Chemical Engineering, 1990, 14(9): 925-944. [14] GUNDERSEN T, DUVOLD S, HASHEMI-AHMADY A. An extended vertical MILP model for Heat Exchanger Network Synthesis[J]. Computers & Chemical Engineering, 1996, 20(supp-S1): S97-S102. [15] BARBARA A, BAGAJEWICZ M J. New rigorous one-step MILP formulation for heat exchanger network synthesis[J]. Computers & Chemical Engineering, 2005, 29(9): 1945-1976. [16] FLOUDAS C A, CIRIC A R. Strategies for overcoming uncertainties in heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1989, 13(10): 1133-1152. [17] FLOUDAS C A, et al. Automatic synthesis of optimum heat exchanger network configurations[J]. Aiche Journal, 1986. [18] CIRIC A R, FLOUDAS C A. Application of the simultaneous match-network optimization approach to the pseudo-pinch problem[J]. Computers & Chemical Engineering, 1990, 14(3): 241-250. [19] CIRIC A R, FLOUDAS C A. Heat exchanger network synthesis without decomposition[J]. Computers & Chemical Engineering, 1991, 15(6): 385-396. [20] KIM S Y, BAGAJEWICZ M. Global optimization of heat exchanger networks using a new generalized superstructure[J]. Chemical Engineering Science, 2016, 147: 30-46. doi: 10.1016/j.ces.2016.02.002 [21] FARIA D C, BAGAJEWICZ M J. Global Optimization of Water Management Problems Using Linear Relaxation and Bound Contraction Methods[J]. Industrial & Engineering Chemistry Research, 2011, 50(7): 3738-3753. [22] FARIA D C, BAGAJEWICZ M J. Global optimization based on subspaces elimination: Applications to generalized pooling and water management problems[J]. Aiche Journal, 2012, 58: 2336-2345. doi: 10.1002/aic.12738 [23] FARIA D C, BAGAJEWICZ M J. A new approach for global optimization of a class of MINLP problems with applications to water management and pooling problems[J]. AIChE Journal, 2012, 58(8): 2320-2335. doi: 10.1002/aic.12754 [24] YEE T F, GROSSMANN I E. Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10): 1165-1184. [25] BJORK K M, WESTERLUND T. Global optimization of heat exchanger network synthesis problems with and without the isothermal mixing assumption[J]. COMPUTERS AND CHEMICAL ENGINEERING, 2002. [26] HUANG K F, AL-MUTAIRI E M, KARIMI I A. Heat exchanger network synthesis using a stagewise superstructure with non-isothermal mixing[J]. Chemical Engineering Science, 2012, 73(none): 30-43. [27] HASAN M M F, JAYARAMAN G, KARIMI I A. Synthesis of heat exchanger networks with nonisothermal phase changes. Aiche Journal, 2010, 56: 930–945. [28] HUANG K F, KARIMI I A. Simultaneous synthesis approaches for cost-effective heat exchanger networks[J]. Chemical Engineering Science, 2013, 98(29): 231-245. [29] HONG X, LIAO Z, JIANG B, et al. New transshipment type MINLP model for heat exchanger network synthesis[J]. Chemical Engineering Science, 2017, 173: 537-559. doi: 10.1016/j.ces.2017.08.013 [30] HONG X, LIAO Z, SUN J, et al. Energy and Water Management for Industrial Large-Scale Water Networks: A Systematic Simultaneous Optimization Approach[J]. Acs Sustainable Chemistry & Engineering, 2018, 6(2): 2269-2282. -