高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

一种新型换热网络多级超结构及其应用

党雨萌 周利 党亚固 吉旭 戴一阳 李好

党雨萌, 周利, 党亚固, 吉旭, 戴一阳, 李好. 一种新型换热网络多级超结构及其应用[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20211227001
引用本文: 党雨萌, 周利, 党亚固, 吉旭, 戴一阳, 李好. 一种新型换热网络多级超结构及其应用[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20211227001
DANG Yumeng, ZHOU Li, DANG Yagu, JI Xu, DAI Yiyang, LI Hao. A new stage-wise superstructure of heat transfer network and its application[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20211227001
Citation: DANG Yumeng, ZHOU Li, DANG Yagu, JI Xu, DAI Yiyang, LI Hao. A new stage-wise superstructure of heat transfer network and its application[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20211227001

一种新型换热网络多级超结构及其应用

doi: 10.14135/j.cnki.1006-3080.20211227001
详细信息
    作者简介:

    党雨萌(1996—),女,宁夏人,硕士生,主要研究方向:换热网络优化。E-mail:idangyuemng@163.com

    通讯作者:

    周 利, E-mail:cathy_9804@126.com

  • 中图分类号: TQ021.8

A new stage-wise superstructure of heat transfer network and its application

  • 摘要: 换热网络优化是一种有效的能量回收方式。然而,拥有较大换热网络结构寻优空间的模型往往是具有非线性、非凸性的复杂混合整数非线性规划(MINLP)模型,常常难以得到可行解。基于换热网络分级超结构,构建了一个包含流股分流、等温混合、流股回流非等温混合的新型换热网络多级超结构并设置全线性约束条件,可以在增加换热网络寻优空间的同时,大幅提升MINLP模型可求解性。通过两个文献案例验证流股分流、流股回流及非等温混合对换热网络寻优的贡献,证明了该模型的有效性和适用性。

     

  • 图  1  新型换热网络多级超结构

    Figure  1.  A new stage-wise superstructure of heat transfer network

    图  2  换热网络进出口的热流股

    Figure  2.  Heat streams at the inlet and outlet of the heat exchange network

    图  3  其他温度区间的热流股

    Figure  3.  Heat streams in other temperature ranges

    图  4  换热网络进出口的冷流股

    Figure  4.  Cold streams at the inlet and outlet of the heat exchange network

    图  5  其他温度区间的冷流股

    Figure  5.  Cold streams in other temperature ranges

    图  6  案例1换热网络

    Figure  6.  The heat exchange network of Case 1

    图  7  案例2换热网络

    Figure  7.  The heat exchange network of Case 2

    表  1  案例1流股数据

    Table  1.   Data for example 1

    StreamTin/℃Tout/℃Fcp/(t·h−1)
    H11754510
    H21256540
    HU180179-
    C12015520
    C24011215
    CU1525-
    下载: 导出CSV

    表  2  案例1结果对比

    Table  2.   Solution comparisons for example 1

    NumberArea/m2cost money/$·yr−1
    Barbaro[15]71358.76142741.75
    Hong[30]71347.61141871.15
    图6(b)61380.18139115.60
    下载: 导出CSV

    表  3  案例2流股数据

    Table  3.   Data for example 2

    SteramTin/KTout/KFcp/(kW·K−1)
    H15003206
    H24803804
    H34603606
    H438036020
    H538032012
    C129066018
    HU700700-
    CU300320-
    下载: 导出CSV

    表  4  案例2结果对比

    Table  4.   Solution comparisons for example 2

    cost/($·yr−1)
    Heat exchangerPublic worksTotal
    Huang[29]69289.21501110.00570399.21
    Hong[30]68923.01502400.00571323.01
    图7(b)69270.94501091.87570362.81
    下载: 导出CSV
  • [1] GUNDEPSEN T, NAESS L. The synthesis of cost optimal heat exchanger networks: An industrial review of the state of the art[J]. Heat Recovery Systems & Chp, 1990, 12(6): 503-530.
    [2] JEZOWSKI J. Heat exchanger network grassroot and retrofit design. The review of the state-of-the art: part I. Heat exchanger network targeting and insight based methods of synthesis[J]. Hungarian Journal of Industrial Chemistry, 1994, 22(4): 279-294.
    [3] 陈鹏, 罗娜. 基于竞争机制差分进化算法的无分流换热网络优化[J]. 华东理工大学学报(自然科学版), 2019, 45(06): 970-979.
    [4] FURMAN K C, SAHINIDIS N V. A Critical Review and Annotated Bibliography for Heat Exchanger Network Synthesis in the 20th Century[J]. Industrial & Engineering Chemistry Research, 2002, 41(10): 2335-2370.
    [5] LINNHOFF B, FLOWER J R. Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks[J]. Aiche Journal, 2010, 24(4): 633-642.
    [6] LINNHOFF B, FLOWER J R. Synthesis of heat exchanger networks: II. Evolutionary generation of networks with various criteria of optimality[J]. Aiche Journal, 1978, 24: 642-654. doi: 10.1002/aic.690240412
    [7] LINNHOFF B, HINDMARSH E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5): 745-763. doi: 10.1016/0009-2509(83)80185-7
    [8] AHMAD S, LINNHOFF B, SMITH R. Cost optimum heat exchanger networks—2. targets and design for detailed capital cost models[J]. Computers & Chemical Engineering, 1990, 14(7): 751-767.
    [9] LINNHOFF B, AHMAD S. Cost optimum heat exchanger networks—1. Minimum energy and capital using simple models for capital cost[J]. Computers & Chemical Engineering, 1990, 14(7): 729-750.
    [10] TOWNSEND D W, LINNHOFF B. Surface area targets for heat exchanger networks in process design[C]. IChemE Annual Research Meeting, Bath UK, 1984.
    [11] CERDA J, WESTERBURG A W. Synthesizing heat exchanger networks having restricted stream/stream matches using transportation problem formulations[J]. Chemical Engineering Science, 1983, 38(10): 1723-1740. doi: 10.1016/0009-2509(83)85029-5
    [12] PAPOULIAS S A, GROSSMANN I E. A structural optimization approach in process synthesis—II: Heat recovery networks[J]. Computers & Chemical Engineering, 1983, 7(6): 707-721.
    [13] GUNDERSEN T, GROSSMANN I E. Improved optimization strategies for automated heat exchanger network synthesis through physical insights[J]. Computers & Chemical Engineering, 1990, 14(9): 925-944.
    [14] GUNDERSEN T, DUVOLD S, HASHEMI-AHMADY A. An extended vertical MILP model for Heat Exchanger Network Synthesis[J]. Computers & Chemical Engineering, 1996, 20(supp-S1): S97-S102.
    [15] BARBARA A, BAGAJEWICZ M J. New rigorous one-step MILP formulation for heat exchanger network synthesis[J]. Computers & Chemical Engineering, 2005, 29(9): 1945-1976.
    [16] FLOUDAS C A, CIRIC A R. Strategies for overcoming uncertainties in heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1989, 13(10): 1133-1152.
    [17] FLOUDAS C A, et al. Automatic synthesis of optimum heat exchanger network configurations[J]. Aiche Journal, 1986.
    [18] CIRIC A R, FLOUDAS C A. Application of the simultaneous match-network optimization approach to the pseudo-pinch problem[J]. Computers & Chemical Engineering, 1990, 14(3): 241-250.
    [19] CIRIC A R, FLOUDAS C A. Heat exchanger network synthesis without decomposition[J]. Computers & Chemical Engineering, 1991, 15(6): 385-396.
    [20] KIM S Y, BAGAJEWICZ M. Global optimization of heat exchanger networks using a new generalized superstructure[J]. Chemical Engineering Science, 2016, 147: 30-46. doi: 10.1016/j.ces.2016.02.002
    [21] FARIA D C, BAGAJEWICZ M J. Global Optimization of Water Management Problems Using Linear Relaxation and Bound Contraction Methods[J]. Industrial & Engineering Chemistry Research, 2011, 50(7): 3738-3753.
    [22] FARIA D C, BAGAJEWICZ M J. Global optimization based on subspaces elimination: Applications to generalized pooling and water management problems[J]. Aiche Journal, 2012, 58: 2336-2345. doi: 10.1002/aic.12738
    [23] FARIA D C, BAGAJEWICZ M J. A new approach for global optimization of a class of MINLP problems with applications to water management and pooling problems[J]. AIChE Journal, 2012, 58(8): 2320-2335. doi: 10.1002/aic.12754
    [24] YEE T F, GROSSMANN I E. Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10): 1165-1184.
    [25] BJORK K M, WESTERLUND T. Global optimization of heat exchanger network synthesis problems with and without the isothermal mixing assumption[J]. COMPUTERS AND CHEMICAL ENGINEERING, 2002.
    [26] HUANG K F, AL-MUTAIRI E M, KARIMI I A. Heat exchanger network synthesis using a stagewise superstructure with non-isothermal mixing[J]. Chemical Engineering Science, 2012, 73(none): 30-43.
    [27] HASAN M M F, JAYARAMAN G, KARIMI I A. Synthesis of heat exchanger networks with nonisothermal phase changes. Aiche Journal, 2010, 56: 930–945.
    [28] HUANG K F, KARIMI I A. Simultaneous synthesis approaches for cost-effective heat exchanger networks[J]. Chemical Engineering Science, 2013, 98(29): 231-245.
    [29] HONG X, LIAO Z, JIANG B, et al. New transshipment type MINLP model for heat exchanger network synthesis[J]. Chemical Engineering Science, 2017, 173: 537-559. doi: 10.1016/j.ces.2017.08.013
    [30] HONG X, LIAO Z, SUN J, et al. Energy and Water Management for Industrial Large-Scale Water Networks: A Systematic Simultaneous Optimization Approach[J]. Acs Sustainable Chemistry & Engineering, 2018, 6(2): 2269-2282.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  48
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 网络出版日期:  2022-04-12

目录

    /

    返回文章
    返回