Influence of Common Surfactant Binary Composite System on Foam Ability
-
摘要: 使用阴离子表面活性剂十二烷基苯磺酸钠(SDBS)、十二烷基硫酸钠(SLS)、N-月桂酰肌氨酸钠(NLSS)、十二烷基磺酸钠(SDS),两性离子表面活性剂椰油酰胺丙烯甜菜碱(CAB),以及非离子表面活性剂脂肪醇聚氧乙烯醚(AEO)、吐温20(T20)进行二元表面活性剂的复配实验,表征其发泡性能并计算相应的表面活性参数,探究了二元表面活性剂复配的相互作用对发泡能力的影响。结果表明,阴离子与两性离子表面活性剂在复配过程中,物质的量之比接近1∶1时发生聚沉现象;拥有直链疏水基的表面活性剂与亲水基较大的非离子表面活性剂复配时会发生竞争吸附,削弱表面活性剂的发泡能力;拥有相似结构的阴离子表面活性剂复配时能够产生协同效应,SDBS和NLSS物质的量之比为7∶3时发泡能力最佳,对应的最高发泡倍数为14.0。发泡性能最好,二者相互作用参数βm=−9.83(
$x_{{\rm{SDBS}}}^{\rm{m}}$ ),协同效应最佳,吉布斯自由能为$\Delta G_{\rm{m}}^0$ =−13.60 kJ/mol,胶束形成为自发过程。Abstract: Anionic surfactant-sodium dodecyl benzene sulfonate (SDBS), sodium lauryl sulfate (SLS), sodium N-lauroyl sarcosinate (NLSS), sodium dodecyl sulfonate (SDS), zwitterionic surfactant-cocoamide propylene betaine (CAB), and non-ionic surfactant-fatty alcohol polyoxyethylene ether (AEO), Tween 20 (T20) had been used for combination experiment in binary surfactant systems. Foam ability which defined by the ratio of foam volume and initial liquid volume had been characterized as well as the relevant surface activity parameters such as interaction parameter(βm), the mole fraction in micelle and surface, and the Gibbs free energy($\Delta G_{\rm{m}}^0$ ). Further exploration was performed to evaluate the effect of the interaction of the binary surfactant mixture on the foamability. The results showed that during the combination process of anionic and zwitterionic surfactants, coagulation occured when the molar concentration ratio closing to 1∶1. When the surfactant with linear hydrophobic group and the nonionic surface with larger hydrophilic group were mixed, competitive adsorption occured, which weakened the foam ability of the surfactant. Synergistic effects could be produced when anionic surfactants with similar structures were compounded. The mixture of sodium dodecylbenzene sulfonate (SDBS) and sodium lauroyl sarcosinate (NLSS) has the best foaming performance when the molar concentration ratio was 7:3, which had the best foam quality(Q=14.0). The interaction parameter was βm=−9.83 ($x_{{\rm{SDBS}}}^{{\rm{m}}} $ =0.4) calculated by the theory of synergy, which had a strong synergistic effect. The Gibbs free energy is ΔGm 0=−13.60 kJ/mol, proving that the formation of micelles was a spontaneous process.-
Key words:
- surfactant /
- synergistic effect /
- binary surfactant combination /
- foaming performance
-
表 1 表面活性剂复配实验设计表
Table 1. Schemes of surfactant combination experiments
Substrate surfactant Compound surfactant Category Abbreviation SLS CAB Zwitterionic surfactant (SLSx-CABy)N NLSS Anionic surfactant (SLSx-NLSSy)N AEO Non-ionic surfactant (SLSx-AEOy)N T20 Non-ionic surfactant (SLSx-T20y)N SDS CAB Zwitterionic surfactant (SDSx-CABy)N NLSS Anionic surfactant (SDSx-NLSSy)N AEO Non-ionic surfactant (SDSx-AEOy)N T20 Non-ionic surfactant (SDSx-T20y)N SDBS CAB Zwitterionic surfactant (SDBSx-CABy)N NLSS Anionic surfactant (SDBSx-NLSSy)N AEO Non-ionic surfactant (SDBSx-AEOy)N T20 Non-ionic surfactant (SDBSx-T20y)N x, y—The mole ratio of surfactant in combination solution; N—The total concentration of combination solution 表 2 SDBS-NLSS复配表面活性剂体系的表面活性参数(298 K)
Table 2. Surface activity parameters of SDBS-NLSS surfactant mixture system (298 K)
xSDBS cCMC/
(10−3mol·L−1)γCMC/
(mN·m−2)xSDBSm βm $\Delta G_{\rm{m}}^0 $/
(kJ·mol−1)0 1.62 37.7 — — −11.78 0.3 3.75 34.5 0.42 −1.70 −13.25 0.4 4.13 35.2 0.26 −9.83 −13.60 0.5 5.63 34.9 0.33 −4.46 −12.83 0.6 4.36 33.7 0.61 −5.91 −13.47 0.7 3.39 28.1 0.72 −8.80 −14.09 1.0 2.57 25.4 — — −14.77 -
[1] 金谷. 表面活性剂化学[M]. 第2版. 合肥: 中国科学技术大学出版社, 2008. [2] 朱领地, 莒晓艳. 化工产品手册[M]. 第6版. 北京: 化学工业出版社, 2015. [3] 吴可可, 赵益涛, 吴敏, 等. 聚合物基仿生医用胶黏剂的开发与应用[J]. 功能高分子学报, 2021, 34(2): 93-113. [4] 杜志平, 王万绪. 阴离子表面活性剂与阳离子表面活性剂的相互作用(Ⅰ)——表面活性[J]. 日用化学工业, 2006, 36(3): 187-190. [5] 于水军, 袁海燕, 曹文超, 等. 高性能泡沫制备及其灭火性能研究[J]. 河南理工大学学报(自然科学版), 2010, 29(2): 152-156. [6] 甘戈金, 赵晚群. 混凝土发泡剂的研究进展//2013年混凝土与水泥制品学术讨论会论文集[C]//武汉: 中国硅酸盐学会混凝土与水泥制品分会, 2013: 6. [7] 李术标. 污水处理与固废处理行业臭气治理技术探讨[J]. 云南化工, 2020, 47(11): 141-142, 145. doi: 10.3969/j.issn.1004-275X.2020.11.48 [8] 朱清禾. 鼠李糖脂表面活性剂复配体系对芘的增溶特性[J]. 环境科学与技术, 2021, 44(9): 93-99. doi: 10.19672/j.cnki.1003-6504.0851.21.338 [9] 李恒, 赵丽丽, 龚岩, 等. 表面活性剂复配对气化细渣浮选影响的试验研究[J/OL]. 中国电机工程学报:1-9 [ 2021-10-15]. https://kns.cnki.net/kcms/detail/11.2107.TM.20211014.1605.006.html. DOI: 10.13334/j.0258-8013.pcsee.211309. [10] 袁颖, 敬加强, 尹然. 阳离子型表面活性剂与聚合物复配体系协同减阻作用[J/OL]. 化工进展, 2022, 41(5): 2593-2603. [11] RAUL G C A, SANTOS A R, DAVID L, et al. Compatibility of nonionic and anionic surfactants with persulfate activated by alkali in the abatement of chlorinated organic compounds in aqueous phase[J]. Science of the Total Environment, 2021, 751: 141782. [12] 帅洁, 胡佳杰, 涂燕, 等. 光响应小分子/表面活性剂自组装体的宏观光响应行为[J]. 华东理工大学学报(自然科学版), 2020, 46(5): 653-664. [13] 王学川, 王琳, 许伟. 胶原蛋白发泡剂的复配协同作用研究[J]. 中国皮革, 2017, 46(9): 26-32. doi: 10.13536/j.cnki.issn1001-6813.2017-009-005 [14] 郭旭. 复合表面活性剂表面性质和泡沫性能的研究[D]. 上海: 上海师范大学, 2019. [15] PANKAJ S G, KISHORE K M. Mass transfer of volatile organic carbons through aqueous foams[J]. Journal of Colloid and Interface Science, 2004, 273(1): 611-625. [16] EDINZO I, JOSE A, ANA F, et al. A new method to estimate the stability of short-life foams[J]. Colloids and Surfaces: A. Physicochemical and Engineering Aspects, 1995, 98(2): 167-174. [17] 尚亚卓, 张倩, 刘洪来, 等. 偶联表面活性剂和传统表面活性剂混合水溶液的性质[J]. 华东理工大学学报(自然科学版), 2004, 30(4): 419-424. [18] JULIA M V, ALBERTO M M, ANTONIO M R, et. al. Sureface properties and foam stability of protein/surfactant mixtures: Theory and experiment[J]. Journal of Physical Chemistry, 2007, 111: 2715-2723. [19] 王慧敏. 二元表面活性剂混合体系表面活性及协同效应的研究[D]. 济南: 山东师范大学, 2012. [20] HOLLAND P M, RUBINGH D N. Nonideal multicomponent mixed micelle model[J]. The Journal of Physical Chemistry, 1983, 87(11): 1984-1990. doi: 10.1021/j100234a030 [21] 赵国玺. 表面活性剂作用原理[M]. 北京: 中国轻工业出版社, 2003. -