[1] |
KASEY P, 5 trends appear on the Gartner hype cycle for emerging technologies, 2019[R]. 2019.https://www.gartner.com/smarterwithgartner/5-trends-appear-on-the-gartner-hype-cycle-for-emerging-technologies-2019.
|
[2] |
SOUJANYA P, ERIK C, RAJIV B, et al. A review of affective computing: From unimodal analysis to multimodal fusion[J]. Information Fusion, 2017, 37: 98-125. doi: 10.1016/j.inffus.2017.02.003
|
[3] |
CHRISTIAN M, BRENDAN A, ANTON N, et al. A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges[J]. Brain-Computer Interfaces, 2014, 1(2): 66-84. doi: 10.1080/2326263X.2014.912881
|
[4] |
SHANECHI M M. Brain–machine interfaces from motor to mood[J]. Nature neuroscience, 2019, 22(10): 1554-1564. doi: 10.1038/s41593-019-0488-y
|
[5] |
THANYATHORN T, KATHERINE M, JACQUELINE A. Emotion in a century: A review of emotion recognition[C]//Proceedings of the 10th International Conference on Advances in Information Technology. 2018: 1-8.
|
[6] |
JOSEPH L. The emotional brain: The mysterious underpinnings of emotional life[M]. Simon and Schuster, 1998.
|
[7] |
ZHENG W L, ZHU J Y, LV B L. Identifying stable patterns over time for emotion recognition from EEG[J]. IEEE Transactions on Affective Computing, 2017, 10(3): 417-429.
|
[8] |
GARCIA M. B., MARTINEZ R. A., ALCARAZ R, et al. A review on nonlinear methods using electroencephalographic recordings for emotion recognition[J]. IEEE Transactions on Affective Computing, 2019, 12(3): 801-820.
|
[9] |
沈新科, 李奕超, 刘锦, 等. 基于脑电功能连接微状态的情绪状态解码[J]. 智能科学与技术学报, 2021, 3(01): 49-58.
|
[10] |
SHI L C, JIAO Y Y, LV B L. Differential entropy feature for EEG-based vigilance estimation[C]//2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013: 6627-6630.
|
[11] |
PETRANTONAKIS P C, HADJILEONTIADIS L J. Emotion recognition from EEG using higher order crossings[J]. IEEE Transactions on information Technology in Biomedicine, 2009, 14(2): 186-197.
|
[12] |
WU X, ZHENG W L, LV B L. Investigating EEG-based functional connectivity patterns for multimodal emotion recognition[J]. arXiv preprint arXiv: 2004.01973, 2020.
|
[13] |
LI P Y, LIU H A, SI Y J, et al. EEG based emotion recognition by combining functional connectivity network and local activations[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(10): 2869-2881. doi: 10.1109/TBME.2019.2897651
|
[14] |
SONG T F, ZHENG W M, SONG P, et al. EEG emotion recognition using dynamical graph convolutional neural networks[J]. IEEE Transactions on Affective Computing, 2018, 11(3): 532-541.
|
[15] |
O'NEILL G C, TEWARIE P, VIDAURRE D, et al. Dynamics of large-scale electrophysiological networks: A technical review[J]. Neuroimage, 2018, 180: 559-576. doi: 10.1016/j.neuroimage.2017.10.003
|
[16] |
APOORVA S, HAMIDREZA J, MARINA K. Investigating the temporal dynamics of electroencephalogram (EEG) microstates using recurrent neural networks[J]. Human brain mapping, 2020, 41(9): 2334-2346. doi: 10.1002/hbm.24949
|
[17] |
ARTHUR D, VASSILVITSKII S. k-means++: The advantages of careful seeding[R]. Stanford, 2006.
|
[18] |
NORBERT M, M CARMEN R, MARCO T, et al. Recurrence plots for the analysis of complex systems[J]. Physics reports, 2007, 438(5-6): 237-329. doi: 10.1016/j.physrep.2006.11.001
|
[19] |
NIMA H, YANN G, JOHAN D. Classification of time-series images using deep convolutional neural networks[C]//Tenth international conference on machine vision (ICMV 2017). International Society for Optics and Photonics, 2018, 10696: 106960Y.
|
[20] |
KOELSTRA S, MUHL C, SOLEYMANI M, et al. Deap: A database for emotion analysis; using physiological signals[J]. IEEE transactions on affective computing, 2011, 3(1): 18-31.
|
[21] |
ARNAUD D, SCOTT M. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis[J]. Journal of neuroscience methods, 2004, 134(1): 9-21. doi: 10.1016/j.jneumeth.2003.10.009
|
[22] |
LYUDMYLA K, TAMARA R, JULIIA S. Applying recurrence plots to classify time series[J]. COMPUTATIONAL LINGUISTICS AND INTELLIGENT SYSTEMS, 2021, 2: 16-26.
|