高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

半间歇式沸腾床反应器中液相循环速度的测定

王伟伟 张建鹏 岳志 黄子宾 程振民

王伟伟, 张建鹏, 岳志, 黄子宾, 程振民. 半间歇式沸腾床反应器中液相循环速度的测定[J]. 华东理工大学学报(自然科学版), 2023, 49(2): 161-167. doi: 10.14135/j.cnki.1006-3080.20211130001
引用本文: 王伟伟, 张建鹏, 岳志, 黄子宾, 程振民. 半间歇式沸腾床反应器中液相循环速度的测定[J]. 华东理工大学学报(自然科学版), 2023, 49(2): 161-167. doi: 10.14135/j.cnki.1006-3080.20211130001
WANG Weiwei, ZHANG Jianpeng, YUE Zhi, HUANG Zibin, CHENG Zhenmin. Liquid Circulation Velocity Measurements in a Semi-Batch Ebullated-Bed Reactor[J]. Journal of East China University of Science and Technology, 2023, 49(2): 161-167. doi: 10.14135/j.cnki.1006-3080.20211130001
Citation: WANG Weiwei, ZHANG Jianpeng, YUE Zhi, HUANG Zibin, CHENG Zhenmin. Liquid Circulation Velocity Measurements in a Semi-Batch Ebullated-Bed Reactor[J]. Journal of East China University of Science and Technology, 2023, 49(2): 161-167. doi: 10.14135/j.cnki.1006-3080.20211130001

半间歇式沸腾床反应器中液相循环速度的测定

doi: 10.14135/j.cnki.1006-3080.20211130001
基金项目: 国家重点研发计划资助课题(2019YFC1906705)
详细信息
    作者简介:

    王伟伟(1998—),男,山西人,硕士生,主要研究方向为反应器工程。E-mail:1659572778@qq.com

    通讯作者:

    程振民,E-mail:zmcheng@ecust.edu.cn

  • 中图分类号: TQ021.1

Liquid Circulation Velocity Measurements in a Semi-Batch Ebullated-Bed Reactor

  • 摘要: 采用内径286 mm、高7.2 m的气-液-固三相沸腾床反应器进行了液相间歇、气相连续的操作研究,以水、空气、Al2O3球形颗粒构成三相体系,在固含率(体积分数)12% ~ 30%和表观气速0.086 ~ 0.216 m/s下对宏观液相循环速度进行了测定。采用示踪剂法测定反应器进出口的多组示踪剂浓度曲线,使用MATLAB软件对液相轴向扩散系数进行求解,再代入爱因斯坦扩散系数定义式得到液相循环速度。实验结果表明,随着表观气速增大,液相循环速度相应增大;在固含率低于30%时,随着固含率增加,液相循环速度相应增加;但随着固含率进一步增大,液相循环速度的增幅越来越小。

     

  • 图  1  沸腾床实验装置

    Figure  1.  Ebullated bed experimental device

    1—Water tank; 2—Pump; 3—Liquid flow meter; 4—Nitrogen cylinder; 5 —Tracer storage tank; 6 —Bubble sparger; 7—Ebullated-bed; 8—Expansion section; 9—Sampling port; 10—Conductivity detection and acquisition system; 11—Gas flow meter; 12—Air storage tank; 13—Air compressor

    图  2  不同固含率和表观气速下沸腾床1.8 m和4.8 m处示踪剂响应曲线图

    Figure  2.  Response curves of tracer at 1.8 m and 4.8 m of the ebullated-bed under different solid holdups and different superfical gas velocities

    图  3  不同固含率下液体循环速度与表观气速的关系

    Figure  3.  Relationship between the liquid circulation velocity and superfical gas velocity under different solid holdups

    图  4  不同表观气速下液体循环速度与固含率的关系

    Figure  4.  Relationship between liquid circulation velocity and solid holdup under different superficial gas velocities

    图  5  塔顶示踪剂质量浓度求解曲线与实验点曲线图

    Figure  5.  Mass concentration curve of tracer and experimental point curve at the top of tower

  • [1] AL-DALAMA K, STANISLAUS A. Comparison between deactivation pattern of catalysts in fixed-bed and ebullating-bed residue hydroprocessing units[J]. Chemical Engineering Journal, 2006, 120(1/2): 33-42. doi: 10.1016/j.cej.2006.03.013
    [2] MARTINEZ J, SANCHEZ J L, ANCHEYTA J, et al. A review of process aspects and modeling of ebullated bed reactors for hydrocracking of heavy oils[J]. Catalysis Reviews-Science and Engineering, 2010, 52(1): 60-105. doi: 10.1080/01614940903238858
    [3] 姜来. 渣油沸腾床加氢技术现状及操作难点[J]. 炼油技术与工程, 2014, 44(12): 8-12.
    [4] 刘信瑀, 张海涛, 马宏方, 等. 工业聚乙烯流化床的气固流动特性数值模拟[J]. 华东理工大学学报(自然科学版), 2021, 48(6): 736-743.
    [5] SERIZAWA A, KATAOKA I, MICHIYOSHI I. Turbulence structure of air-water bubbly flow: I. Measuring techniques[J]. International Journal of Multiphase Flow, 1975, 2(3): 221-233. doi: 10.1016/0301-9322(75)90011-7
    [6] 任欧旭, 张少峰, 闫文军, 等. 气(汽)-液-固三相流化床中的气(汽)泡行为研究进展[J]. 河北工业大学学报, 2002, 31(5): 44-48. doi: 10.3969/j.issn.1007-2373.2002.05.011
    [7] BEGOVICH J M, WATSON J S. An electroconductivity technique for the measurement of axial variation of holdups in three-phase fluidized beds[J]. American Institute of Chemical Engineers Journal, 1978, 24(2): 351-354. doi: 10.1002/aic.690240228
    [8] MACCHI A, GRACE J R, BI H. Use of ultrasound for phase holdup measurements in multiphase systems[J]. Canadian Journal of Chemical Engineering, 2001, 79(4): 570-578. doi: 10.1002/cjce.5450790415
    [9] BRENN G, BRAESKE H, DURST F. Investigation of the unsteady two-phase flow with small bubbles in a model bubble column using phase-Doppler anemometry[J]. Chemical Engineering Science, 2002, 57(24): 5143-5159. doi: 10.1016/S0009-2509(02)00423-2
    [10] 贾翔飞, 钱嘉澍, 吴幼青, 等. 鼓泡塔反应器中两相流动CFD-PBM耦合数值模拟[J]. 华东理工大学学报 (自然科学版), 2021, 47(1): 1-10.
    [11] MATOUšEK V. Solids transport formula in predictive model for pipe flow of slurry above deposit[J]. Particulate Science and Technology, 2011, 29(1): 89-106. doi: 10.1080/02726351.2010.510549
    [12] PäRSSINEN J H, ZHU J X. Particle velocity and flow development in a long and high-flux circulating fluidized bed riser[J]. Chemical Engineering Science, 2001, 56(18): 5295-5303. doi: 10.1016/S0009-2509(01)00200-7
    [13] DAYAN A, ZALMANOVICH S. Axial dispersion and enterainment of particles in wakes of bubbles[J]. Chemical Engineering Science, 1982, 37(8): 1253-1257. doi: 10.1016/0009-2509(82)85068-9
    [14] ADEKOMAYA O, OLAFUYI O. An experimental study of the effect of contaminants on the flow properties of oil based drilling mud[J]. Petroleum & Coal, 2011, 53(4): 315-319.
    [15] ADEKOMAYA O A. Modelling of solid flow effect on pressure drop in a vertical gas well[J]. Petroleum Exploration and Development, 2012, 39(2): 245-249. doi: 10.1016/S1876-3804(12)60038-X
    [16] 赵学明, 王一平, 胡宗定, 等. 三相流化床液相径向和轴向扩散的研究[J]. 化工学报, 1990, 41(6): 718-722.
    [17] LEVENSPIEL O. Chemical Reaction Engineering[M]. New Jersey, USA: John Wiley & Sons, 1998.
    [18] LEVENSPIEL O, BISCHOFF K B. Patterns of flow in chemical process vessels[J]. Advances in Chemical Engineering, 1964, 4: 95-198.
    [19] HSU J T, DRANOFF J S. On initial condition problems for reactor dispersion model[J]. Chemical Engineering Science, 1986, 41(7): 1930-1934. doi: 10.1016/0009-2509(86)87076-2
    [20] STANDART G. The thermodynamic significance of the Danckwerts’ boundary conditions[J]. Chemical Engineering Science, 1968, 23(6): 645-655. doi: 10.1016/0009-2509(68)89009-8
    [21] 宋晓晖, 戴猷元, 沈忠耀, 等. 分散-聚合型脉冲萃取柱中分散相轴向混合的研究[J]. 高校化学工程学报, 1986(1): 55-64.
    [22] 杨基础, 费维扬, 沈忠耀, 等. 用时间域最小二乘拟合法研究萃取柱中的轴向混合[J]. 化工学报, 1982, 33(2): 103-116.
    [23] LEVENSPIEL O, SMITH W K. Notes on the diffusion-type model for the longitudinal mixing of fluids in flow[J]. Chemical Engineering Science, 1957, 6(4/5): 227-235. doi: 10.1016/0009-2509(57)85021-0
    [24] 程振民, 朱开宏, 袁渭康. 高等反应工程[M]. 北京: 化学工业出版社, 2020.
    [25] 杨涛, 方向晨, 蒋立敬, 等. STRONG沸腾床渣油加氢工艺研究[J]. 石油学报(石油加工), 2010(S1): 33-36.
    [26] ZEHNER P. Momentum, mass and heat transfer in bubble columns: Part 1. Flow model of the bubble column and liquid velocities[J]. International Chemical Engineering, 1986, 26: 22-28.
    [27] UEYAMA K, MIYAUCHI T. Properties of recirculating turbulent two phase flow in gas bubble columns[J]. American Institute of Chemical Engineers Journal, 1979, 25(2): 258-266. doi: 10.1002/aic.690250207
    [28] RIQUARTS H. A physical model for axial mixing of the liquid phase for heterogeneous flow regime in bubble columns[J]. German Chemical Engineering, 1981, 4: 18-23.
    [29] ULBRECHT J J, KAWASE Y, AUYEUNG K F. More on mixing of viscous liquids in bubble columns[J]. Chemical Engineering Communications, 1985, 35(1/6): 175-191. doi: 10.1080/00986448508911225
    [30] KAWASE Y, MOO-YOUNG M. Liquid phase mixing in bubble columns with Newtonian and non-Newtonian fluids[J]. Chemical Engineering Science, 1986, 41(8): 1969-1977. doi: 10.1016/0009-2509(86)87113-5
    [31] MATSUMOTO T, HIDAKA N, KAMIMURA H, et al. Turbulent mixing-length model for axial turbulent diffusion of liquid in three-phase fluidized bed[J]. Journal of Chemical Engineering of Japan, 1988, 21(3): 256-261. doi: 10.1252/jcej.21.256
    [32] CHENG Z M, HUANG Z B, YANG T, et al. Modeling on scale-up of an ebullated-bed reactor for the hydroprocessing of vacuum residuum[J]. Catalysis Today, 2014, 220: 228-236.
    [33] KRISHNA R, VAN BATEN J M, URSEANU M I, et al. Design and scale up of a bubble column slurry reactor for Fischer–Tropsch synthesis[J]. Chemical Engineering Science, 2001, 56(2): 537-545. doi: 10.1016/S0009-2509(00)00258-X
    [34] RIQUARTS H P. Strömungsprofile, impulsaustausch und durchmischung der flüssigen phase in blasensäulen[J]. Chemie Ingenieur Technik, 1981, 53(1): 60-61. doi: 10.1002/cite.330530118
    [35] 朱闯杰, 岳志, 黄子宾, 等. 固含率对沸腾床反应器气泡行为的影响[J]. 化工学报, 2018, 69(11): 4763-4769.
    [36] SMITH D N, RUETHER J A. Dispersed solid dynamics in a slurry bubble column[J]. Chemical Engineering Science, 1985, 40(5): 741-753. doi: 10.1016/0009-2509(85)85027-2
    [37] LI H, PRAKASH A. Influence of slurry concentrations on bubble population and their rise velocities in a three-phase slurry bubble column[J]. Powder Technology, 2000, 113(1/2): 158-167. doi: 10.1016/S0032-5910(00)00228-X
  • 加载中
图(5)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  80
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 网络出版日期:  2022-04-12
  • 刊出日期:  2023-04-30

目录

    /

    返回文章
    返回