Stabilized Carriers of Erlotinib Amorphous Solid Dispersions
-
摘要: 固体分散体(SDs)作为提高难溶性药物溶出度的主要技术之一,其能保持长期物理稳定性的关键是选择合适的载体。采用溶剂挥发法,选用六种聚合物为载体,制备厄洛替尼(ERL)SDs。通过Flory-Huggins相互作用参数χ与反溶剂显微观察评估了聚合物与ERL的相容性及对ERL结晶的影响,聚焦光束反射测量仪(FBRM)在线分析聚合物对结晶的过程调控作用机制。对不同比例SDs的固态性质进行表征,并测定了加速稳定性试验样品的无定型状态。结果表明,优选出的羟丙甲基纤维素能长期保持SDs中药物的无定型态,三种方法联合应用有助于快速选择最适载体。Abstract: Solid dispersions (SDs) is one of the main technologies to improve the dissolution of poorly soluble drugs in drug research and development. However, supersaturated high-energy amorphous state drug in SDs are often associated with a tendency to recrystallized during long term storage. The carrier of SDs plays a key role in maintaining the amorphous state of the drug. Traditionally, the screening of the carrier in the development process is a time-consuming process. The effect of polymer carriers on the long-term physical stability of the amorphous state of Erlotinib (ERL) in SDs were studied. ERL SDs were prepared with different ratios of HPMC, HPMCAS, PVP, PVP/VA, Eudragit, and Soluplus by solvent evaporation method. Through the Flory-Huggins interaction parameter χ and anti-solvent microscopic observations, the compatibility of the polymer with ERL and polymer's influence on the crystallization of ERL were predicted. Focused Beam Reflectance Measurement (FBRM) system was used to analyzed morphologically the regulating effect of the polymer on the crystallization process. Then the amorphous state formed by different proportions of SDs were characterized by Powder X-Ray Diffraction (PXRD), Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy(FT-IR). The physical stability of amorphous state of SDs in accelerated test condition were determined by PXRD. The results showed that HPMC is a suitable carrier for the preparation of ERL amorphous SDs. The combination of the interaction parameter χ, anti-solvent microscopic observation and FBRM analysis is an effective way to select suitable carrier for amorphous SDs. A full understanding of the impact of polymers on amorphous SDs is of positive significance for the rapid development of poorly soluble drugs.
-
Key words:
- Erlotinib /
- Solid dispersions /
- Carrier /
- Stability /
- HPMC
-
表 1 熔点降低法计算Flory-Huggins相互作用参数(χ)
Table 1. The Flory-Huggins interaction parameter (χ) calculated by melting point depression method
ERL-Polymer χ ERL-Eud −0.175 ERL-HPMCAS −0.249 ERL-K30 −0.756 ERL-S630 −0.853 ERL-Soluplus −0.921 ERL-HPMC −1.072 表 2 室温下ERL在聚合物溶液中的溶解度(n=3)
Table 2. The solubility of ERL in polymer solutions at room temperature (n=3)
Solubility/(μg·mL−1) Standard deviation Water 0.36 0.03 HPMCAS 0.55 0.05 Eud 0.43 0.04 HPMC 0.48 0.04 S630 0.56 0.03 K30 0.53 0.07 Soluplus 21.76 0.18 表 3 加速稳定性试验样品中ERL的状态
Table 3. State of ERL in accelerated stability test sample
ERL:Polymer Time(mon) Eud HPMCAS K30 S630 Soluplus HPMC 3:1 1 C C A C C A 2 C C C C C C 3 C C C C C C 6 C C C C C C 1:1 1 C A A A C A 2 C A A A C A 3 C A A A C A 6 C A C C C A 1:3 1 A A A A A A 2 A A A A C A 3 A A A A C A 6 A A A A C A *C: crystal; A: Amorphous -
[1] DI L, KERNS EH, CARTER GT. Drug-like property concepts in pharmaceutical design[J]. Current Pharmaceutical Design. 2009, 15(19): 2184-2194. [2] KALEPU, S. ; NEKKANTI, V. Insoluble drug delivery strategies: Review of recent advances and business prospects[J]. Acta Pharm. Sin. B. 2015, 5: 442-453. [3] 蔡萍, 欧丽泉, 赵国巍, 等. 载体材料对固体分散体溶出行为的影响及机制研究进展[J]. 中国新药杂志, 2021, 30(17): 1600-1604. doi: 10.3969/j.issn.1003-3734.2021.17.011 [4] FUNG M, BERZINS K, SURYANARAYANAN R. Physical stability and dissolution behavior of ketoconazole−organic acid coamorphous systems[J]. Mol. Pharmaceutics. 2018, 15: 1862−1869. [5] BERZINS K, FRASER-MILLER S J, WALKER G F. Investigation on formulation strategies to mitigate compression-induced destabilization in supersaturated celecoxib amorphous solid dispersions. molecular pharmaceutics. 2021, 18(10): 3882-3893 [6] 杜鹏, 王璐璐, 郑稳生, 等. 固体分散体载体材料研究新进展[J]. 中国医药生物技术. 2021, 16(04): 339-342. [7] IVANISEVIC I. Physical stability studies of miscible amorphous solid dispersions[J]. Journal of Pharmaceutical Sciences, 2010, 99(9): 4005-4012. doi: 10.1002/jps.22247 [8] VANDECRUYS R, PEETERS J, VERRECK G, et al. Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design[J]. International Journal of Pharmaceutics 2007, 342: 168-75. [9] 付亭亭, 左文宝, 郭珏铄, 等. 固体分散体的释药机制及其物理稳定性研究进展[J]. 中国新药杂志. 2020, 29(3): 275-280. [10] SUN M, WU C, FU Q, et al. Solvent-shift strategy to identify suitable polymers to inhibit humidity-induced solid-state crystallization of lacidipine amorphous solid dispersions[J]. International Journal of Pharmaceutics 2016, 503(1-2): 238-246. [11] 王娜, 陶晓龙, 史欢欢, 等. 过程分析技术在晶体多晶型研究中的应用[J]. 化学工业与工程. 2017, 34(02): 1-9. [12] BARESCHINO M, SCHETTINO C, TROIANI T, et al. Erlotinib in cancer treatment[J]. Annals of Oncology, 2007, 18(6): 35-41. [13] MARSAC PJ, SHAMBLIN SL, TAYLOR LS. Theoretical and practical approaches for prediction of drug–polymer miscibility and solubility[J]. Pharmaceutical Research, 2006, 23(10): 2417-2426. doi: 10.1007/s11095-006-9063-9 [14] ZHAO Y, INBAR P, CHOKSHI HP, et al. Prediction of the thermal phase diagram of amorphous solid dispersions by flory–huggins theory[J]. Journal of Pharmaceutical Sciences, 2011, 100(8): 3196-3207. doi: 10.1002/jps.22541 [15] RUMONDOR ACF, KONNO H, MARSAC PJ, et al. Analysis of the moisture sorption behavior of amorphous drug–polymer blends[J]. Journal of Applied Polymer Science, 2010, 117(2): 1055-1063. doi: 10.1002/app.31803 -