高级检索

  • ISSN 1006-3080
  • CN 31-1691/TQ

钛酸钡/苯并噁唑树脂耐高温纳米复合材料的制备和介电性能

姜正涛 刘小云 汪文涛 庄启昕

姜正涛, 刘小云, 汪文涛, 庄启昕. 钛酸钡/苯并噁唑树脂耐高温纳米复合材料的制备和介电性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20211024001
引用本文: 姜正涛, 刘小云, 汪文涛, 庄启昕. 钛酸钡/苯并噁唑树脂耐高温纳米复合材料的制备和介电性能[J]. 华东理工大学学报(自然科学版). doi: 10.14135/j.cnki.1006-3080.20211024001
JIANG Zhengtao, LIU Xiaoyun, WANG Wentao, ZHUANG Qixin. Preparation and Dielectric Properties of High Temperature Resistant Barium Titanate/ Benzoxazole Nano-Composites[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20211024001
Citation: JIANG Zhengtao, LIU Xiaoyun, WANG Wentao, ZHUANG Qixin. Preparation and Dielectric Properties of High Temperature Resistant Barium Titanate/ Benzoxazole Nano-Composites[J]. Journal of East China University of Science and Technology. doi: 10.14135/j.cnki.1006-3080.20211024001

钛酸钡/苯并噁唑树脂耐高温纳米复合材料的制备和介电性能

doi: 10.14135/j.cnki.1006-3080.20211024001
基金项目: 国家自然科学基金(52073091, 51773060,22171086);上海市自然科学基金(20ZR1414600);上海市先进聚合物材料实验室开放基金
详细信息
    作者简介:

    姜正涛(1996−),男,江苏人,硕士生,研究方向为耐高温高性能材料。E-mail:jiangzhengtao99@163.com

    通讯作者:

    庄启昕,qxzhuang@ecust.edu.cn;刘小云,liuxiaoyun@ecust.edu.cn

  • 中图分类号: O63

Preparation and Dielectric Properties of High Temperature Resistant Barium Titanate/ Benzoxazole Nano-Composites

  • 摘要: 合成了一种新型的热固性苯并噁唑树脂(NPBO),并采用化学接枝的方法制备了聚氨酯包覆钛酸钡核壳结构纳米粒子(PU@BT),将PU@BT与NPBO树脂复合,制备了PU@BT/NPBO纳米复合材料。对NPBO的化学结构和热固化行为进行研究,采用扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察了PU@BT的微观形貌,采用宽频介电谱仪测量了复合材料的介电性能。研究结果发现:随着PU@BT的体积分数由0提高到10%,复合材料的介电常数大幅提高。在1 kHz时,纯NPBO的介电常数为3.3,而加入10 vol% PU@BT后,复合材料介电常数为7.3,相对纯NPBO的介电常数提高了1.21倍。

     

  • 图  1  NPBO树脂的合成示意图

    Figure  1.  Synthetic route of NPBO resin

    图  2  NPBO树脂的1H-NMR图和EI-MS图

    Figure  2.  1H-NMR and EI-MS spectra of NPBO resin

    图  3  NPBO树脂在不同加热速率下的DSC曲线(a)以及固化特征温度和加热速率之间的关系(b)

    Figure  3.  (a) DSC curves of NPBO resin; (b) Relationship between the curing characteristic temperatures and heating rates

    图  4  NPBO树脂的Kissinger和Ozawa拟合曲线(a)和在不同温度下固化的FTIR光谱(b)

    Figure  4.  Kissinger and Ozawa fitting curves of NPBO resin(a) and FTIR spectra of the NPBO resin cured at different temperature(b)

    图  5  BT、OH@BT、NH2@BT、PU@BT的红外吸收光谱

    Figure  5.  FTIR spectra of BT、OH@BT、NH2@BT、PU@BT

    图  6  BT、PU@BT的的X射线衍射图

    Figure  6.  X-ray diffraction patterns of BT、PU@BT

    图  7  NH2@BT、PU@BT的热失重曲线

    Figure  7.  TGA curves of NH2@BT、PU@BT

    图  8  PU@BT的SEM和TEM图像

    Figure  8.  SEM and TEM images of PU@BT

    图  9  PU@BT的EDS图像

    Figure  9.  EDS images of PU@BT

    图  10  PU@BT/NPBO纳米复合材料的介电常数(a)和介电损耗(b)

    Figure  10.  Frequency dependent dielectric constant(a) and dielectric loss(b) of PU@BT/NPBO

    表  1  NPBO树脂在不同加热速率下的固化特性参数

    Table  1.   Curing characteristic parameter of NPBO resin at different heating rates

    ${ \rm{{Heating rate /(^{o}C\cdot min^{-1} )}} }$Ti /oCTp /oCTt /oC
    5181.6207.3228.1
    10193.4215.2232.5
    15202.0223.1237.7
    20208.8228.9244.1
    25213.3234.0249.3
    Ti is the initial curing temperature; Tp is the peak curing temperature; Tt is the final curing temperature.
    下载: 导出CSV
  • [1] 张慧, 衡婷婷, 房正刚, 等. 高储能陶瓷/聚偏氟乙烯复合电介质的研究进展[J]. 复合材料学报, 2021, 38(7): 2107-2122.
    [2] 杨敏铮, 江建勇, 沈洋. 高能量密度介电储能材料研究进展[J]. 硅酸盐学报, 2021, 49(7): 1249-1262.
    [3] 谢浩然, 罗行, 周科朝. 基于聚丙烯的介电复合材料研究进展与挑战[J]. 中国有色金属学报, 2021, 31(8): 2014-2028. doi: 10.11817/j.ysxb.1004.0609.2021-41034
    [4] LI X L, SHI L W, CHEN L, et al. Composite of aromatic polythiourea/BaTiO3 nanowires with high energy density and high discharge efficiency for energy storage applications[J]. Journal of Materials Science-Materials in Electronics, 2021, 32(14): 19309-19326. doi: 10.1007/s10854-021-06450-z
    [5] TABHANE G H, GIRIPUNJE S M, KONDAWAR S B. Fabrication and dielectric performance of RGO-PANI reinforced PVDF/ BaTiO3 composite for energy harvesting[J]. Synthetic Metals, 2021, 279: 116845. doi: 10.1016/j.synthmet.2021.116845
    [6] COSTA C M, REIZABAL A, SERRA R S I, et al. Broadband dielectric response of silk Fibroin/BaTiO3 composites: Influence of nanoparticle size and concentration[J]. Composites Science and Technology, 2021, 213: 108927. doi: 10.1016/j.compscitech.2021.108927
    [7] HUA J, LI Y, LIU X, et al. Graphene/MWNT/Poly(p-phenylenebenzobisoxazole) multiphase nanocomposite via solution prepolymerization with superior microwave absorption properties and thermal stability[J]. Journal of Physical Chemistry C, 2017, 121(2): 1072-1081. doi: 10.1021/acs.jpcc.6b11925
    [8] DE NG H, FU Q. Recent progress on the confinement, assembly, and relaxation of inorganic functional fillers in polymer matrix during processing[J]. Macromolecular Rapid Communications, 2017, 38: 1700444. doi: 10.1002/marc.201700444
    [9] 陈一, 陈文旗, 庄启昕. 等. 纳米钛酸钡负载还原氧化石墨烯/PBO纳米复合材料的制备和性能[J]. 功能高分子学报, 2018, 31(6): 569-577.
    [10] JIANG C, ZHANG D, ZHOU K, et al. Significantly enhanced energy storage density of sandwich-structured (Na0.5Bi0.5)0.93Ba0.07TiO3/P(VDF–HFP) composites induced by PVP-modified two-dimensional platelets[J]. Journal of Materials Chemistry A, 2016: 10.1039.
    [11] CHAUDHURI R G, PARIA S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications[J]. Chemical Reviews, 2012, 112(4): 2373-2433. doi: 10.1021/cr100449n
    [12] GAWANDE M B, GOSWAMI A, ASEFA T, et al. Core–shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis[J]. Chemical Society Reviews, 2015, 44: 7540-7590. doi: 10.1039/C5CS00343A
    [13] 黄慧琳, 周云超, 刘小云. 含苯并噁唑环氧树脂的合成、固化动力学及热性能[J]. 功能高分子学报, 2019, 32(3): 345-352.
    [14] 钟璇, 王宇飞, 黄晴, 等. 含供电子取代基三苯胺基团苯并噁唑聚合物的合成与性能[J]. 华东理工大学学报(自然科学版), 2020, 46(4): 464-471.
    [15] FENG H, MA W, CUI Z K, et al. Core/shell-structured hyperbranched aromatic polyamide functionalized graphene nanosheets-poly(p-phenylene benzobisoxazole) nanocomposite films with improved dielectric properties and thermostability[J]. Journal of Materials Chemistry A, 2017, 5(18): 8705-8713. doi: 10.1039/C7TA00587C
    [16] CHEN Y, ZHUANG Q X, LIU X Y, et al. Preparation of thermostable PBO/graphene nanocomposites with high dielectric constant[J]. Nanotechnology, 2013, 24: 245702. doi: 10.1088/0957-4484/24/24/245702
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  144
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-24
  • 网络出版日期:  2021-06-16

目录

    /

    返回文章
    返回